Между какими соседними натуральными числами заключено число: 1)√27 ≈ 5,2
Между 5 и 6.
2)√135-2 ≈ 11,6-2 ≈ 9,6
Между 9 и 10.
3)√14 ≈ 3,7
Между 3 и 4.
4)√321 ≈ 17,9
Между 17 и 18.
Для памятки:
Натуральные - это те, с которых выражают целое количество предметов - два яблока, три апельсина. То есть натуральные числа это умное название для привычных всем чисел 1, 2, 3, 4 и так далее.
Если к натуральным добавить ноль и отрицательные, то это будет называться целые числа.
А если добавить и дроби - то это рациональные числа.
1. а) подставим верхний и нижний пределы интегрирования в (-х³-2х²+2х), применим формулу Ньютона - Лейбница, получим (-1-2+2)-(8-8-4)=4-1=3
б) подставим верхний и нижний пределы интегрирования в 0.5(-сtg2х), применим формулу Ньютона - Лейбница, получим
0.5*(-ctgπ/2-(-ctgπ/4))=0.5*(0-(-1))=0.5
в) подставим верхний и нижний пределы интегрирования в 2/(x-3), применим формулу Ньютона - Лейбница, получим 2/(2-3)-2/(1-3)=
-2-2/(-2)=-1
г) подставим верхний и нижний пределы интегрирования в (х⁵/⁴)/(5/4) применим формулу Ньютона - Лейбница, получим (16⁵/⁴)/(5/4) -(1⁵/⁴)/(5/4) =(4/5)*(32-1)=31*4/5=124/5=24.8
2. Надо найти определенный интеграл от единицы до трех от
(-х²+6х-5-0)dx, т.е. в (-х³/3+3х²-5х) подставить верхний и нижний пределы интегрирования и применить формулу Ньютона - Лейбница.
В решении.
Объяснение:
Между какими соседними натуральными числами заключено число: 1)√27 ≈ 5,2
Между 5 и 6.
2)√135-2 ≈ 11,6-2 ≈ 9,6
Между 9 и 10.
3)√14 ≈ 3,7
Между 3 и 4.
4)√321 ≈ 17,9
Между 17 и 18.
Для памятки:
Натуральные - это те, с которых выражают целое количество предметов - два яблока, три апельсина. То есть натуральные числа это умное название для привычных всем чисел 1, 2, 3, 4 и так далее.
Если к натуральным добавить ноль и отрицательные, то это будет называться целые числа.
А если добавить и дроби - то это рациональные числа.
1. а) подставим верхний и нижний пределы интегрирования в (-х³-2х²+2х), применим формулу Ньютона - Лейбница, получим (-1-2+2)-(8-8-4)=4-1=3
б) подставим верхний и нижний пределы интегрирования в 0.5(-сtg2х), применим формулу Ньютона - Лейбница, получим
0.5*(-ctgπ/2-(-ctgπ/4))=0.5*(0-(-1))=0.5
в) подставим верхний и нижний пределы интегрирования в 2/(x-3), применим формулу Ньютона - Лейбница, получим 2/(2-3)-2/(1-3)=
-2-2/(-2)=-1
г) подставим верхний и нижний пределы интегрирования в (х⁵/⁴)/(5/4) применим формулу Ньютона - Лейбница, получим (16⁵/⁴)/(5/4) -(1⁵/⁴)/(5/4) =(4/5)*(32-1)=31*4/5=124/5=24.8
2. Надо найти определенный интеграл от единицы до трех от
(-х²+6х-5-0)dx, т.е. в (-х³/3+3х²-5х) подставить верхний и нижний пределы интегрирования и применить формулу Ньютона - Лейбница.
получим (-3³/3+3*3²-5*3)-(-1/3+3-5)=27-9-15+1/3+2=5 1/3/ед. кв./