В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Anzhelika35
Anzhelika35
20.01.2023 17:42 •  Алгебра

Скількома група з 25 туристів може розміститисья в автобусі на 30 місць

Показать ответ
Ответ:
вероника1062
вероника1062
08.03.2023 23:52

1. Записать в стандартном виде многочлен : 5х·3у²-2х²у-4ху·7у+0,5ух·5х=15ху²-2х²у-28ху²+2,5х²у=-13ху²+0,5х²у

2. Преобразовать в многочлен стандартного вида : (у³+у²-у)-(у²+у-1)=у³+у²-у-у²-у+1=у³-2у+1

3. Вычислить значение выражения : 3х²-(7ху-4х²)+(5ху-7х²) ,при х=0,3 ; у= -10

3х²-(7ху-4х²)+(5ху-7х²)=3х²-7ху+4х²+5ху-7х²=-2ху     -2*0,3*(-10)=6

4.Упростить выражение : (4а²)²-2а³(1+8а)=16а^4-2а³-16a^4=-2а³

5. Упростить выражение : (а+b)(а+2)-(а-b)(а-2)-2аb=а²+2a+ab+2b-а²+2a+ab-2b-2аb=4a

6. Раскрыть скобки используя соответствующее правило : а) 3а²+(а-5)=3а²+а-5  ; б) 5-(4а+5)=5-4а-5=-4a

7. Упростить выражение : а) х-(3х+5)+(2х-4)=х-3х-5+2х-4=-9  ; б) (3а²-4b+5)+(2b-а²-1)=3а²-4b+5+2b-а²-1=2а²-2b+4

8. Решить уравнение : 3х-5+2х-7=-2

5х-12=-2

5x=10

x=2

9. Выполнить умножение: а) -4у(2х-5у+1)=-8xy+20y²-4y; б) 8а²(а-3а³)=8a³-24a^5

10. Упростить выражение : а) 5(х-8)-2(5+х)=5x-40-10-2x=3x-50 ; б) х(х²+х-2)-х²(х-1)=x³+x-2x-x³+x²=2x²-2x

11. Упростить выраж. : у²(у³+у-2)-у(у³+1)+2у²-у³ =y^5+y³-2y²-y^4-y+2y²-y³=y^5-y^4-y

^ - знак степени

0,0(0 оценок)
Ответ:
mishel7884
mishel7884
03.06.2022 05:35

Дана функция у = (х-1)²/x².

1.Область определения функции. D ∈ R : x ≈ 0.

2. Нули функции. Точки пересечения графика функции с осью ОХ.

График функции пересекает ось X при f = 0.

Значит, надо решить уравнение (х-1)²/x² = 0.

Решаем это уравнение (достаточно приравнять нулю числитель):

(х-1)² = 0, х-1 = 0, х = 1.

Точки пересечения с осью X: (1; 0).

График пересекает ось Y, когда x равняется 0.

Подставляем x = 0 в (x - 1)²/x².

Результат: (0 - 1)²/0² невыполним, значит, график не пересекает ось Оу.

3. Промежутки знакопостоянства функции.

Так как переменная в числителе и знаменателе в квадрате, то функция на всей числовой оси только положительна.

4. Симметрия графика (чётность или нечётность функции).

f(-x) = ((-x) - 1)²/((-x)²) = (x + 1)²/x² ≠ f(x) ≠ -f(-x).

Поэтому функция не чётная и не нечётная.

5. Периодичность графика. Не периодична.

6.Точки разрыва, поведение функции в окрестностях точек разрыва, вертикальные асимптоты - смотри приложение.

7. Интервалы монотонности функции, точки экстремумов, значения функции в точках экстремумов.

Первая производная: y' = (1/x²)*(2x - 2) - (2/x³)*(x - 1)²

или y' = (2x - 2)/x³.

Находим нули функции. Для этого приравниваем производную к нулю

(достаточно числитель): 2x-2 = 0

Откуда: x1 = 2/2 = 1.

(-∞ ;0) (0; 1) (1; +∞)

f'(x) > 0 f'(x) < 0 f'(x) > 0

функция возрастает функция убывает функция возрастает.

В окрестности точки x = 1 производная функции меняет знак с (-) на (+). Следовательно, точка x = 1 - точка минимума.

8. Интервалы выпуклости, точки перегиба.

Найдем точки перегибов, для этого надо решить уравнение

\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0.

(вторая производная равняется нулю),

корни полученного уравнения будут точками перегибов для указанного графика функции:

\frac{d^{2}}{d x^{2}} f{\left (x \right )} =

Вторая производная

\frac{1}{x^{2}} \left(2 - \frac{1}{x} \left(8 x - 8\right) + \frac{6}{x^{2}} \left(x - 1\right)^{2}\right) = 0

Решаем это уравнение

Корни этого ур-ния

x_{1} = \frac{3}{2}

Также нужно подсчитать пределы y'' для аргументов, стремящихся к точкам неопределённости функции:

Точки, где есть неопределённость:

x_{1} = 0.

\lim_{x \to 0^-}\left(\frac{1}{x^{2}} \left(2 - \frac{1}{x} \left(8 x - 8\right) + \frac{6}{x^{2}} \left(x - 1\right)^{2}\right)\right) = \infty.

\lim_{x \to 0^+}\left(\frac{1}{x^{2}} \left(2 - \frac{1}{x} \left(8 x - 8\right) + \frac{6}{x^{2}} \left(x - 1\right)^{2}\right)\right) = \infty.

- пределы равны, значит, пропускаем соответствующую точку.

Интервалы выпуклости и вогнутости:

Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:

Вогнутая на промежутках

(-oo, 3/2]

Выпуклая на промежутках

[3/2, oo)

9. Поведение функции в бесконечности. Наклонные (в частности, горизонтальные) асимптоты - смотри приложение.

10. Дополнительные точки, позволяющие более точно построить график - даны в приложении.

11. Построение графика функции по проведенному исследованию дан в приложении.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота