Объяснение:
y'' = y' + x
Делаем замену y' = z(x). Тогда y'' = z'(x). Подставляя в исходное уравнение, получаем:
- x - z + z' = 0
Представим в виде:
- z + z' = x
Это неоднородное уравнение. Сделаем замену переменных: z = u * v, z' = u' * v + u * v'.
-u * v + u * v' + u' * v = x
или
u( - v + v') + u' * v = x
Выберем переменную v так, чтобы выполнялись условия:
1. u * ( - v + v') = 0
2. u'v = x
1. Приравниваем u=0, находим решение для:
- v + v' = 0
v' = v
Преобразуем уравнение так, чтобы получить уравнение с разделяющимися переменными:
(dv / v) = dx
Интегрируя, получаем:
ln(v) = x
v = ex
2. Зная v, Находим u из условия: u' * v = x
u' * ex = x
u' = x * e-x
u = C + (- x - 1) * e-x
Из условия z=u*v, получаем:
z = u * v = (C + ( - x - 1) * e -x) * ex
z = C * ex - x - 1.
Поскольку y'=z, то интегрируя, окончательно получаем:
y=C1 * ex - x2 / 2 - x + C2
Графики такого вида строят методом преобразований.
Исходный график y=|x| ( рис.1)
График y=-|x| получен из него зеркальным отражением относительно оси Ох ( рис.2)
График y=-|x|+6 получен из графика y=-|x| сдвигом вдоль оси Оу на 6 единиц вверх (рис.3)
График y=|-|x|+6| получен из графика y=-|x|+6 зеркальным отражением относительно оси Ох которая расположена ниже оси Ох ( рис.4)
График y=-|-|x|+6| получен из графика y=|-|x|+6| зеркальным отражением относительно оси Ох ( рис.5)
Можно, конечно, раскрыть модуль на промежутках:
(-∞;-6]
y=-|-(-x)+6|=-|x+6|=-(-x-6)=x+6
(-6;0]
y=-|-(-x)+6|=-|x+6|=-(x+6)=-x-6
(0;6]
y=-|-(x)+6|=-|-x+6|=-(-(x-6))=x-6
(6;+∞)
y=-|-(x)+6|=-|-x+6|=-(x-6)=-x+6
Объяснение:
y'' = y' + x
Делаем замену y' = z(x). Тогда y'' = z'(x). Подставляя в исходное уравнение, получаем:
- x - z + z' = 0
Представим в виде:
- z + z' = x
Это неоднородное уравнение. Сделаем замену переменных: z = u * v, z' = u' * v + u * v'.
-u * v + u * v' + u' * v = x
или
u( - v + v') + u' * v = x
Выберем переменную v так, чтобы выполнялись условия:
1. u * ( - v + v') = 0
2. u'v = x
1. Приравниваем u=0, находим решение для:
- v + v' = 0
Представим в виде:
v' = v
Преобразуем уравнение так, чтобы получить уравнение с разделяющимися переменными:
(dv / v) = dx
Интегрируя, получаем:
ln(v) = x
v = ex
2. Зная v, Находим u из условия: u' * v = x
u' * ex = x
u' = x * e-x
Интегрируя, получаем:
u = C + (- x - 1) * e-x
Из условия z=u*v, получаем:
z = u * v = (C + ( - x - 1) * e -x) * ex
или
z = C * ex - x - 1.
Поскольку y'=z, то интегрируя, окончательно получаем:
y=C1 * ex - x2 / 2 - x + C2
Графики такого вида строят методом преобразований.
Исходный график y=|x| ( рис.1)
График y=-|x| получен из него зеркальным отражением относительно оси Ох ( рис.2)
График y=-|x|+6 получен из графика y=-|x| сдвигом вдоль оси Оу на 6 единиц вверх (рис.3)
График y=|-|x|+6| получен из графика y=-|x|+6 зеркальным отражением относительно оси Ох которая расположена ниже оси Ох ( рис.4)
График y=-|-|x|+6| получен из графика y=|-|x|+6| зеркальным отражением относительно оси Ох ( рис.5)
Можно, конечно, раскрыть модуль на промежутках:
(-∞;-6]
y=-|-(-x)+6|=-|x+6|=-(-x-6)=x+6
(-6;0]
y=-|-(-x)+6|=-|x+6|=-(x+6)=-x-6
(0;6]
y=-|-(x)+6|=-|-x+6|=-(-(x-6))=x-6
(6;+∞)
y=-|-(x)+6|=-|-x+6|=-(x-6)=-x+6