1) По условию на первом месте стоит число 7 Найдём несколько следующих чисел данной последовательности, чтобы найти закономерность. 2) 7²=49; 4+9=13; 13+1=14 На втором месте стоит число 14 3) 14²=196; 1+9+6=16; 16+1=17 На третьем месте стоит число 17 4) 17²=289; 2+8+9=19; 19+1=20 На четвёртом месте стоит число 20 5) 20²=400; 4+0+0=4; 4+1=5 На пятом месте стоит число 5 6) 5²=25; 2+5=7; 7+1=8 На шестом месте стоит число 8 7) 8²=64; 6+4=10; 10+1=11 На седьмом месте стоит число 11 8) 11²=121; 1+2+1=4; 4+1=5 На восьмом месте стоит число 5 Получается, что теперь члены последовательности будут повторяться: 5; 8; 11; 5; 8; 11... Получается последовательность: 7; 14; 17; 20; 5; 8; 11; 5; 8; 11... Подсчитаем, какое число будет стоять на 2017 месте. Вычтем 4 первых члена, которые не повторяются: 2017 - 4 = 2013 Число 2013 делится без остатка на 3 2013 : 3 = 671 Следовательно, после четырёх первых членов 7; 14; 17; 20 будет 671 раз повторяться тройка чисел 5; 8; 11. Значит, последним будет число 11.
1) а) F'(x)=3*x^2+8*x-5+0 Так как (x^3)'=3*x^2, (x^2)'=2*x, (x)'=1, (C)'=0, то F'(x)=f(x) б) F'(x)=3*4*x^3-1/x=12*x^3-1/x Так как (x^4)'=4*x^3, (ln x)'=1/x, то F'(x)=f(x) 2) a) F(x)=-x^(-2)+sin x, (x^(-2))'=-2*x^(-2-1)=-2*x^-3=-2/x^3, (sin x)'=cos x и f(x)=2/x^3+cos x След. F'(x)=f(x) б) F(x)=3*e^x Так как (3*e^x)'=3*(e^x)'=3*e^x и f(x)=3*e^x, то F'(x)=f(x) 3) F(x)=x^3+2x^2+C, т. к. (x^3)'=3x^2 (2x^2)'=2*2x=4x C'=0 1. f(x)=3x^2+4x След. , F'(x)=f(x) 2. Т. к. график первообразной проходит через A(1;5), то 5=1^3+2*1+C - верное равенство 5=3+С С=2 ответ: F(x)=x^3+2x^2+2 4) у=x^2 у=9 x^2=9 х1=-3 х2=3 Границы интегрирования: -3 и 3 Чертим на коорд. пл. графики функ. у=x^2 и у=9, опускаем проекции из точек пересеч. графиков на ось х Полученный прямоугольник обозначаем как ABCD, площадь которого равна 9*(3+3)=54 S (OCD)= ∫ от 0 до 3 x^2 dx = 1/3*3^3-1/3*0=9 Т. к. S (ABO) = S (OCD), то S(иск) =54-2*9=36 В пятом условии для решения не хватает функции, график которой бы "замыкал" указанные параболы на коор. плоскости.
Найдём несколько следующих чисел данной последовательности, чтобы найти закономерность.
2) 7²=49; 4+9=13; 13+1=14
На втором месте стоит число 14
3) 14²=196; 1+9+6=16; 16+1=17
На третьем месте стоит число 17
4) 17²=289; 2+8+9=19; 19+1=20
На четвёртом месте стоит число 20
5) 20²=400; 4+0+0=4; 4+1=5
На пятом месте стоит число 5
6) 5²=25; 2+5=7; 7+1=8
На шестом месте стоит число 8
7) 8²=64; 6+4=10; 10+1=11
На седьмом месте стоит число 11
8) 11²=121; 1+2+1=4; 4+1=5
На восьмом месте стоит число 5
Получается, что теперь члены последовательности будут повторяться:
5; 8; 11; 5; 8; 11...
Получается последовательность:
7; 14; 17; 20; 5; 8; 11; 5; 8; 11...
Подсчитаем, какое число будет стоять на 2017 месте.
Вычтем 4 первых члена, которые не повторяются:
2017 - 4 = 2013
Число 2013 делится без остатка на 3
2013 : 3 = 671
Следовательно, после четырёх первых членов 7; 14; 17; 20 будет 671 раз повторяться тройка чисел 5; 8; 11. Значит, последним будет число 11.