1-й мотоциклист, проехав расстояние от А до В, повернул и проехал от В 12км, пока не встретил 2-го мотоциклиста. Возьмем х за расстояние, которое проехал 2-й мотоциклист до встречи с 1-м. Следовательно расстояние от А до В, которое возьмем за у будет равным:
у=х+12.
Когда на обратном пути 1-й мотоциклист, проехав (1/6 у)км расстояния от А, встречает 2-го мотоциклиста (не обгоняет!). Значит расстояние между А и В будет равным:
График построен
Объяснение:
y = -x² + 2x + 8 - это парабола, ветви которой направлены вниз (a < 0).
Найдём вершину:
x = - 2 / (2 * (-1)) = 1
y = -1² + 2*1 + 8 = -1 + 2 + 8 = 9
Итак, вершина: (1; 9).
По т-ме Виета корни уравнения x² + 2x + 8: x₁ = -2, x₂ = 4. Эти точки - точки пересечения графика с осью ОХ.
С вершины т.(1; 9) проводим ветви вниз, которые пересекут ось ОХ в точках (-2; 0) и (4; 0).
На фото:
т. С(1; 9) - вершина;
т. D(0; 8) - точка пересечения графика с осью ОY;
т. А(-2; 0) и т.В(4; 0) - точки пересечения графика с осью ОХ.
72км
Объяснение:
1-й мотоциклист, проехав расстояние от А до В, повернул и проехал от В 12км, пока не встретил 2-го мотоциклиста. Возьмем х за расстояние, которое проехал 2-й мотоциклист до встречи с 1-м. Следовательно расстояние от А до В, которое возьмем за у будет равным:
у=х+12.
Когда на обратном пути 1-й мотоциклист, проехав (1/6 у)км расстояния от А, встречает 2-го мотоциклиста (не обгоняет!). Значит расстояние между А и В будет равным:
у=х +1/6 у.
Составляем систему уравнений:
у=х+12
у=х +1/6 у
х+12-х -1/6 у=у-у
12 -1/6 у=0
1/6 у=12
у=12•6=72км - расстояние между пунктами А и В.