Точка пересечения графика функции с осью координат Y:График пересекает ось Y, когда x равняется 0: подставляем x=0 в x^3+3*x-5. Результат: y=-5. Точка: (0, -5)Точки пересечения графика функции с осью координат X:График функции пересекает ось X при y=0, значит нам надо решить уравнение:x^3+3*x-5 = 0 Решаем это уравнение и его корни будут точками пересечения с X: x=-(-5/2 + sqrt(29)/2)**(1/3) + (-5/2 + sqrt(29)/2)**(-1/3)≈1,15417. Точка: (1,15417, 0)Экстремумы функции:Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:y'=3*x^2 + 3=0 Решаем это уравнение и его корни будут экстремумами: x = √-1 - нет решения и нет экстремумов. Точки перегибов графика функции:Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции, + нужно подсчитать пределы y'' при аргументе, стремящемся к точкам неопределенности функции:y''=6*x=0 Решаем это уравнение и его корни будут точками, где у графика перегибы:x=0. Точка: (0, -5)Интервалы выпуклости, вогнутости:Найдем интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках изгибов:Вогнутая на промежутках: [0, oo)Выпуклая на промежутках: (-oo, 0]Вертикальные асимптоты графика функции:Горизонтальную асимптоту найдем с предела данной функции при x->+oo и x->-oo. Соотвествующие пределы находим :lim x^3+3*x-5, x->+oo = oo, значит горизонтальной асимптоты справа не существуетlim x^3+3*x-5, x->-oo = -oo, значит горизонтальной асимптоты слева не существуетНаклонные асимптоты графика функции:Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при x->+oo и x->-oo. Находим пределы :lim x^3+3*x-5/x, x->+oo = oo, значит наклонной асимптоты справа не существуетlim x^3+3*x-5/x, x->-oo = oo, значит наклонной асимптоты слева не существуетЧетность и нечетность функции:Проверим функци четна или нечетна с соотношений f(x)=f(-x) и f(x)=-f(x). Итак, проверяем:x^3+3*x-5 = -x^3 - 3*x - 5 - Нетx^3+3*x-5 = -(-x^3 - 3*x - 5) - Нетзначит, функция не является ни четной ни нечетной
х--длина ровного участка у--длина подъема из А в В. если ехать из В в А,у будет длина спуска,а 0,7у длина 0,7у--длина спуска из А в В подъема. т.е. наоборот 24мин=2/5часа. сост.уравн. (х/25+у/15+0,7у/30)-(х/25+у/30+ 0,7у/15)=2/5. у/15+0,7у-у/30-0,у/15=2/5 0,3у=12 у=40--т.е. длина подъема равна 40км.из А в В 40*0,7=28---длина спуска из А в В 40+28=68; 78-68=10км--ДЛИНА РОВНОГО УЧАСТКА ДОРОГИ. 10/25+28/15+40/30=3,18/30 или 3ч 36 мин. но мы не знаем где было больше подъемов из А в В или из В в А,поэтому делаем проверку 10/25+28/30+40/15=120/30=4часа. т.к. значит 3ч,36мин ответ:10км;3ч,36мин
в x^3+3*x-5.
Результат: y=-5. Точка: (0, -5)Точки пересечения графика функции с осью координат X:График функции пересекает ось X при y=0, значит нам надо решить уравнение:x^3+3*x-5 = 0 Решаем это уравнение и его корни будут точками пересечения с X:
x=-(-5/2 + sqrt(29)/2)**(1/3) + (-5/2 + sqrt(29)/2)**(-1/3)≈1,15417. Точка: (1,15417, 0)Экстремумы функции:Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:y'=3*x^2 + 3=0
Решаем это уравнение и его корни будут экстремумами:
x = √-1 - нет решения и нет экстремумов.
Точки перегибов графика функции:Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции,
+ нужно подсчитать пределы y'' при аргументе, стремящемся к точкам неопределенности функции:y''=6*x=0
Решаем это уравнение и его корни будут точками, где у графика перегибы:x=0. Точка: (0, -5)Интервалы выпуклости, вогнутости:Найдем интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках изгибов:Вогнутая на промежутках: [0, oo)Выпуклая на промежутках: (-oo, 0]Вертикальные асимптоты графика функции:Горизонтальную асимптоту найдем с предела данной функции при x->+oo и x->-oo. Соотвествующие пределы находим :lim x^3+3*x-5, x->+oo = oo, значит горизонтальной асимптоты справа не существуетlim x^3+3*x-5, x->-oo = -oo, значит горизонтальной асимптоты слева не существуетНаклонные асимптоты графика функции:Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при x->+oo и x->-oo. Находим пределы :lim x^3+3*x-5/x, x->+oo = oo, значит наклонной асимптоты справа не существуетlim x^3+3*x-5/x, x->-oo = oo, значит наклонной асимптоты слева не существуетЧетность и нечетность функции:Проверим функци четна или нечетна с соотношений f(x)=f(-x) и f(x)=-f(x). Итак, проверяем:x^3+3*x-5 = -x^3 - 3*x - 5 - Нетx^3+3*x-5 = -(-x^3 - 3*x - 5) - Нетзначит, функция не является ни четной ни нечетной
х--длина ровного участка
у--длина подъема из А в В. если ехать из В в А,у будет длина спуска,а 0,7у длина
0,7у--длина спуска из А в В подъема. т.е. наоборот
24мин=2/5часа.
сост.уравн.
(х/25+у/15+0,7у/30)-(х/25+у/30+ 0,7у/15)=2/5.
у/15+0,7у-у/30-0,у/15=2/5
0,3у=12
у=40--т.е. длина подъема равна 40км.из А в В
40*0,7=28---длина спуска из А в В
40+28=68; 78-68=10км--ДЛИНА РОВНОГО УЧАСТКА ДОРОГИ.
10/25+28/15+40/30=3,18/30 или 3ч 36 мин. но мы не знаем где было больше подъемов из А в В или из В в А,поэтому делаем проверку
10/25+28/30+40/15=120/30=4часа. т.к.
значит 3ч,36мин
ответ:10км;3ч,36мин