{у=1/4х^2 {у=5х-16 5x-16=0.25x^2 0.25x^2-5x+16=0 D=(-5)^2-4*0.25*16=9 x₁=4 x₂=1 y₁=4 y₂=-9 y=1/4*4²=4 y=5*4-16=4 y=1/4*1²=1/4 y=5*1-16=-11 Значит х=1 - лишний корень. При х=4 => 1/4x^2=4; 5x-16=4 ответ: точка пересечения параболы и прямой (4;4)
f(x)=x^2-8x+7 Квадратичная функция, график - парабола. Формула вершины параболы: x=-b/2a - формула касательной к вершине, параллельной 0Х: x=8/2 x=4 y=4^2-8*4+7 y=16-32+7 y=-9 Точка вершины параболы (4;-9). Направление ветвей параболы: подставим х=2 (можно любое значение х, если у будет больше, чеь у=-9, то ветви параболы направлены вверх). y=2^2-8*2+7 y=-1 -1>-9 - ветви параболы направлены вверх, значит область значения Е(у) ∈ (-9,+∞) Также прилагаю к первому заданию таблицу, ко второму - таблицу и график - для наглядности
История возникновения алгебры. История возникновения алгебры уходит своими корнями в глубокую древность. Очевидно, ее появление было вызвано и непосредственно связано с первыми астрономическими и другими расчетами, так или иначе использующими натуральные числа и арифметические операции. История возникновения алгебры подтверждается подобными оригинальными записями, найденными среди образцов письменности самых ранних цивилизаций. К примеру, египтяне и вавилоняне уже умели решать простейшие уравнения первой и второй степеней, квадратные уравнения. Но их вычисления носили строго практический характер. История возникновения алгебры, как теоретической науки, приводит нас в античную Грецию. Именно здесь в IV веке появилось первое сочинение, которое являлось непосредственным исследованием абстрактных алгебраических вопросов. Это был трактат мыслителя Диофанта. Здесь уже четко обозначены простейшие алгебраические аксиомы: правила знаков (минус на минус – плюс, и так далее), примеры достаточно сложных задач, исследование числовых степеней, решения вопросов, связанных с теорией чисел и так далее. К сожалению, это единственный труд, который дошел до нас из седых древних времен, да и то не в полном объеме. Математика и другие цивилизации. Интересно, что история возникновения алгебры вовсе не ограничивается Европой и имеющей с ней связь арабской цивилизацией. Так, существенных результатов в этой науке достигли индийские математики. В частности, именно они ввели понятие «нуля», которое позже через арабский мир пришло в Европу и стало использоваться учеными. Китайцы совершенно независимо, еще на заре нашей эры, научились решать уравнения первой степени. Им были известны иррациональные и отрицательные числа. Европа возвращает лидерство. Прерванная история развития алгебры вновь начинает свой отсчет уже в Новое время. Первым сочинением после трактата Диофанта считается труд купца из Италии Леонардо, который познакомился с арифметикой и алгеброй, путешествуя по востоку. Постепенное разложение феодализма, а вместе с ним церковной схоластики и догматики, неторопливая поступь капитализма и стремление к территориальным открытиям привели к возрождению все научные отрасли на континенте. И уже спустя пару столетий Европа вновь становится передовым в научном и техническом плане регионом.
{у=5х-16
5x-16=0.25x^2
0.25x^2-5x+16=0
D=(-5)^2-4*0.25*16=9
x₁=4
x₂=1
y₁=4
y₂=-9
y=1/4*4²=4
y=5*4-16=4
y=1/4*1²=1/4
y=5*1-16=-11
Значит х=1 - лишний корень.
При х=4 => 1/4x^2=4; 5x-16=4
ответ: точка пересечения параболы и прямой (4;4)
f(x)=x^2-8x+7
Квадратичная функция, график - парабола.
Формула вершины параболы: x=-b/2a - формула касательной к вершине, параллельной 0Х:
x=8/2
x=4
y=4^2-8*4+7
y=16-32+7
y=-9
Точка вершины параболы (4;-9).
Направление ветвей параболы:
подставим х=2 (можно любое значение х, если у будет больше, чеь у=-9, то ветви параболы направлены вверх).
y=2^2-8*2+7
y=-1
-1>-9 - ветви параболы направлены вверх, значит область значения
Е(у) ∈ (-9,+∞)
Также прилагаю к первому заданию таблицу, ко второму - таблицу и график - для наглядности
История возникновения алгебры уходит своими корнями в глубокую древность. Очевидно, ее появление было вызвано и непосредственно связано с первыми астрономическими и другими расчетами, так или иначе использующими натуральные числа и арифметические операции. История возникновения алгебры подтверждается подобными оригинальными записями, найденными среди образцов письменности самых ранних цивилизаций. К примеру, египтяне и вавилоняне уже умели решать простейшие уравнения первой и второй степеней, квадратные уравнения. Но их вычисления носили строго практический характер. История возникновения алгебры, как теоретической науки, приводит нас в античную Грецию. Именно здесь в IV веке появилось первое сочинение, которое являлось непосредственным исследованием абстрактных алгебраических вопросов. Это был трактат мыслителя Диофанта. Здесь уже четко обозначены простейшие алгебраические аксиомы: правила знаков (минус на минус – плюс, и так далее), примеры достаточно сложных задач, исследование числовых степеней, решения вопросов, связанных с теорией чисел и так далее. К сожалению, это единственный труд, который дошел до нас из седых древних времен, да и то не в полном объеме.
Математика и другие цивилизации.
Интересно, что история возникновения алгебры вовсе не ограничивается Европой и имеющей с ней связь арабской цивилизацией. Так, существенных результатов в этой науке достигли индийские математики. В частности, именно они ввели понятие «нуля», которое позже через арабский мир пришло в Европу и стало использоваться учеными. Китайцы совершенно независимо, еще на заре нашей эры, научились решать уравнения первой степени. Им были известны иррациональные и отрицательные числа.
Европа возвращает лидерство.
Прерванная история развития алгебры вновь начинает свой отсчет уже в Новое время. Первым сочинением после трактата Диофанта считается труд купца из Италии Леонардо, который познакомился с арифметикой и алгеброй, путешествуя по востоку. Постепенное разложение феодализма, а вместе с ним церковной схоластики и догматики, неторопливая поступь капитализма и стремление к территориальным открытиям привели к возрождению все научные отрасли на континенте. И уже спустя пару столетий Европа вновь становится передовым в научном и техническом плане регионом.