1. Наибольшее и наименьшее значения заданной функции на заданном отрезке без производной : y=√(1+cos2x) , [-п/2, 0] , Косинус имеет максимум при х = 0, равный 1. Поэтому наибольшее значение заданная функция имеет при х = 0, у = √2. Наименьшее значение заданной функции соответствует х = -π/2, тогда подкоренное выражение равно 0 и вся функция равна 0.
2.Наименьшее и наибольшее значения заданной функции на заданном отрезке : y=2cosx+x , [-п/2, п/2]. Функция представляет сумму косинуса и прямой линии. Максимум функции при х = π/6 равен √3 + (π/6). Минимум функции при х = -π/2 равен -π/2.
y=√(1+cos2x) , [-п/2, 0] ,
Косинус имеет максимум при х = 0, равный 1.
Поэтому наибольшее значение заданная функция имеет при х = 0, у = √2.
Наименьшее значение заданной функции соответствует х = -π/2, тогда подкоренное выражение равно 0 и вся функция равна 0.
2.Наименьшее и наибольшее значения заданной функции на заданном отрезке :
y=2cosx+x , [-п/2, п/2].
Функция представляет сумму косинуса и прямой линии.
Максимум функции при х = π/6 равен √3 + (π/6).
Минимум функции при х = -π/2 равен -π/2.
1)найдём производную
y'=4x^3+24x^2+48x+32
2)приравняем к нулю
4x^3+24x^2+48x+32=0
разделим всё на 4
x^3+6x^2+12x+8=0
вынесим х за скобки
x(x^2+6x+12+8)=0
x(x^2+6x+20)=0
x=0 x^2+6x+20=0
D=36-4*1*20= -44 (пустое значение)
3)данные промежутки подставляем в саму функцию,не в производную
f(0)=0^4 + 0^3 + 0^2 + 0 + 21 = 21
f(-3)=(-3)^4 + 8 * (-3)^3 + 24 * (-3)^2 + 32 * (-3) + 21 = 81 + (-216) + 216+ (-96) + 21 = 81-216 + 216 -96 + 21 = 6
6 - наименьшее значение функции
21 - наибольшее значение функции