А) Тут надо приравнять левую часть неравенства к нулю и решить как обычное квадратное уравнение, то бишь найти корни при дискриминанта: D= 49 - 4*(-9)*2 = 49+72 = 121 (т.е. 11^2) Находим сами корни: х1 = (7+11):4 = х2 = (7-11):4 = -1 Далее необходимо отметить эти точки на координатном луче (и они выколоты, потому что знак неравенства строго "меньше") Они делят этот луч на три промежутка, два крайних из которых имеют знак "+". А тот, что в середине, под знаком "-". Так как неравенство МЕНЬШЕ нуля, выбираем промежуток в середине, множество чисел которого и является решением. То есть ответ будет выглядеть так: х (знак принадлежности, в дальнейшем будем обозначать его @) (-1 ; 4,5) Едем дальше. Б) Ну тут вообще просто)) Корнем 49 является что? Правильно, "+ -7". Тут даже и решать-то нечего: х @ ( - %(бесконечность) ; -7)U(7 ; + %) В) Здесь алгоритм тот же, что и первом примере. Разве что на координатном луче надо выбрать крайние промежутки, потому как в неравенстве стоит знак "больше") То есть: х @ ( - % ; х1) U (х2 ; + %). На всякий случай:
а) sqrt(7)-sqrt(5) ??? sqrt(13)-sqrt(11) умножим обе части на (sqrt(7)+sqrt(5))(sqrt(13)+sqrt(11)) > 0 и обнаружим разность квадратов (7-5)(sqrt(13)+sqrt(11) ??? (13-11)(sqrt(7)+sqrt(5)) 2(sqrt(13)+sqrt(11) ??? 2(sqrt(7)+sqrt(5)) очевидно, что sqrt(13)>sqrt(7) и sqrt(11)>sqrt(5) значит левая часть больше правой б) (sqrt(2) - 2) x > sqrt(2) + 2 умножим обе части на (sqrt(2) + 2) >0 (sqrt(2) + 2)((sqrt(2) - 2)) x > (sqrt(2) + 2)^2 (2-4)x > 2+4sqrt(2)+4 x<-3-2sqrt(2) правая часть ~ -5.8 наибольшее целое x = -6
D= 49 - 4*(-9)*2 = 49+72 = 121 (т.е. 11^2)
Находим сами корни:
х1 = (7+11):4 =
х2 = (7-11):4 = -1
Далее необходимо отметить эти точки на координатном луче (и они выколоты, потому что знак неравенства строго "меньше")
Они делят этот луч на три промежутка, два крайних из которых имеют знак "+". А тот, что в середине, под знаком "-". Так как неравенство МЕНЬШЕ нуля, выбираем промежуток в середине, множество чисел которого и является решением. То есть ответ будет выглядеть так:
х (знак принадлежности, в дальнейшем будем обозначать его @) (-1 ; 4,5)
Едем дальше.
Б) Ну тут вообще просто)) Корнем 49 является что? Правильно, "+ -7". Тут даже и решать-то нечего:
х @ ( - %(бесконечность) ; -7)U(7 ; + %)
В) Здесь алгоритм тот же, что и первом примере. Разве что на координатном луче надо выбрать крайние промежутки, потому как в неравенстве стоит знак "больше") То есть:
х @ ( - % ; х1) U (х2 ; + %).
На всякий случай:
При условии, что уравнение имеет вид
Удачи :)