Пусть х - числитель дроби, тогда (х+4) - знаменатель дроби, а х/(х+4) - сама обыкновенная дробь, (х+2) - новый числитель, (х+4+21)=(х+25) - новый знаменатель, тогда (х+2)/(х+25) - новая дробь. Известно, что после преобразования дроби, дробь уменьшилась на 1/4. Составим и решим уравнение. (Получается, исходная дробь больше новой) х/(х+4) - (х+2)/(х+25)=1/4 х/(х+4) - (х+2)/(х+25)-1/4=0 (Приведем к общему знаменателю 4*(х+4)*(х+25)) {4*(х+25)*х - 4*(х+2)*(х+4) - (х+4)*(х+25)}/(4*(х+25)*(х+4))=0 теперь буду писать чисто числитель при условии неравенства 0 знаменателя, чтобы не тянуть дроби (знаменатель равен 0, при х=-4 и х=-25) 4х^2 +100x -(4x+8)*(x+4)-x^2-25x-4x-100=0 4х^2 +100x -4х^2-16x-8x-32-x^2-25x-4x-100=0 -x^2+47x-132=0 x^2-47x+132=0 - получили квадратное уравнение, a=1, b=-47 ,c=132, находим дискриминант D=b^2-4*a*c=(-47)^2-4*1*132=2209-528=1681=41^2 по формулам x=(-b плюс/минус√D)/2a определяем корни х1=(47+41)/2=44 х2=(47-41)/2=3. Определим для обоих случаев значение знаменателя, если х1=44, то 44+4=48 - знаменатель. тогда дробь получится 44/48, но это не подходит по условию задачи, так как указано, что дробь несократимая, а эту можно на 4 сократить. если х2=3, то 3+4=7 - знаменатель, а 3/7 - исходная искомая дробь. ответ 3/7
4x² - 12x + 9 = 0
D = b² - 4ac = 144 - 16×9 = 0
x = -b/2a
x = 12/8
x = 1,5
2) 5x² + 1 - 6x + 4x² = 0
9x² - 6x + 1 = 0
D = b² - 4ac = 36 - 36×1 = 0
x = -b/2a
x = 6/18
x = 1/3
3) x² + 2x - 3 = 0
D = b² -4ac = 4 - 4×(-3) = 26 = 4²
x1 = ( - 2 + 4) / 2 = 1
x2 = ( - 2 - 4) / 2 = - 3
4) x² + 3x -4 = 0
D = b²- 4ac = 9 - 4×(-4) = 25 = 5²
x1 = ( - 3 + 5) / 2 = 1
x2 = ( - 3 - 5) / 2 = - 4
5) x² - 5x + 4 = 0
D = b² - 4ac = 25 - 4×4 = 9 = 3²
x1 =( 5 + 3) / 2 = 4
x2 = ( 5 - 3) / 2 = 1
6) x² - 4x + 3 = 0
D = b - 4ac = 16 - 4×3 = 4 = 2²
x1 = ( 4 + 2) / 2 = 3
x2 = ( 4 - 2) / 2 = 1
7) 2x² + x - 3x - 4 = 0
2x² - 2x - 4 = 0
x² - x - 2 = 0
D = b² - 4ac = 1 - 4×(-2) = 9 = 3²
x1 = ( 1 + 3) / 2 = 2
x2 = ( 1 - 3) / 2 = - 1
8) 2x² - 3x - 4x + 3 = 0
2x² - 7x + 3 = 0
D = b²- 4ac = 49 - 8×3 = 25 = 5²
x1 = ( 7 + 5) / 4 = 3
x2 = ( 7 - 5)/ 4 = 0,5
(Получается, исходная дробь больше новой)
х/(х+4) - (х+2)/(х+25)=1/4
х/(х+4) - (х+2)/(х+25)-1/4=0 (Приведем к общему знаменателю 4*(х+4)*(х+25))
{4*(х+25)*х - 4*(х+2)*(х+4) - (х+4)*(х+25)}/(4*(х+25)*(х+4))=0
теперь буду писать чисто числитель при условии неравенства 0 знаменателя, чтобы не тянуть дроби (знаменатель равен 0, при х=-4 и х=-25)
4х^2 +100x -(4x+8)*(x+4)-x^2-25x-4x-100=0
4х^2 +100x -4х^2-16x-8x-32-x^2-25x-4x-100=0
-x^2+47x-132=0
x^2-47x+132=0 - получили квадратное уравнение,
a=1, b=-47 ,c=132, находим дискриминант
D=b^2-4*a*c=(-47)^2-4*1*132=2209-528=1681=41^2
по формулам x=(-b плюс/минус√D)/2a
определяем корни х1=(47+41)/2=44
х2=(47-41)/2=3.
Определим для обоих случаев значение знаменателя,
если х1=44, то 44+4=48 - знаменатель. тогда дробь получится 44/48, но это не подходит по условию задачи, так как указано, что дробь несократимая, а эту можно на 4 сократить.
если х2=3, то 3+4=7 - знаменатель, а 3/7 - исходная искомая дробь.
ответ 3/7