В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
juliatroenko
juliatroenko
08.07.2022 15:13 •  Алгебра

Складіть систему двох лінійних рівнянь, яка має розв’язок:

а) (5; −1) ; б Складіть систему двох лінійних рівнянь, яка має розв’язок:а) (5; −1) ; б) (−2">

Показать ответ
Ответ:
auaftsuaftsa
auaftsuaftsa
14.02.2020 17:17

См. рисунок

1. Правильный шестиугольник, состоит из шести равносторонних треугольников.

Найдем сторону шестиугольника AB=r=48/6=8м.

Рассмотрим ΔСDO в нем CD=DO=0,5a (где а - сторона квадрата) ⇒ a=2CD

По теореме Пифагора найдем  СD

r²=CD²+DO²=2CD² ⇒ r=CD√2⇒CD=\frac{r}{\sqrt{2} }= \frac{8}{\sqrt{2}} м

a=2*\frac{8}{\sqrt{2}}=8\sqrt{2} м

2. Из задачи №1. мы убедились, что радиус описанной окружности равен стороне правильного шестиугольника.

Площадь правильного шестиугольника равна

S=\frac{3\sqrt{3}r^{2}}{2}

r=\sqrt{\frac{2S}{3\sqrt{3}}}=\sqrt{\frac{2*72\sqrt{3}}{3\sqrt{3}}}=\sqrt{48}=4 \sqrt{3} см

Длина окружности равна L=2πr=2π4√3=π*8√3≈43,5 см

3.  Площадь сектора равна

S=\pi r^{2} *\frac{n}{360}= \pi 12^{2} \frac{120}{360} =\pi \frac{144}{3}≈151 см²

(где n - градусная мера дуги сектора)


1) периметр правильного шестиугольника вписанного в окружность,равен 48м. найди сторону квадрата,впи
0,0(0 оценок)
Ответ:
хочузнать2018
хочузнать2018
17.12.2020 02:17
Решение 1)   sin³x*cosx - cos³x*sinx = 1/4  умножим обе части уравнения на   4 4*(sin³x*·cosx - cos³x*sinx) = 1  4*(sin²x*sinx*cosx-cos²x*cosx*sinx) =   1  4*sinx*cosx*(sin²x - cos²x) = 1 - 2*(2*sinx*cosx)*(cos²x - sin²x) = 1 - 2*sin2x*cos2x = 1   - sin4x = 1 sin4x= - 1 4x = - π/2 + 2πk, k∈z x = - π/8 + πk/2, k∈z 2)   2cos²2x + 3sin4x + 4sin²2x = 0 2cos²2x + 3*2*sin2xcos2x    + 4sin²2x = 02cos²2x +6sin2xcos2x    + 4sin²2x = 0делим на cos²2x  ≠ 0 4tg²2x +  6tg2x + 2 = 0  делим на 2 2tg²2x +3 tg2x + 1 = 0  tg2x = t 2t² + 3t + 1 = 0 d = 9 - 4*2*1 = 1 t₁ = (- 3 - 1)/4 = - 1 t₂ = (- 3 + 1)/4 = - 1/2 1)   tg2x = - 1 2x = arctg(-1) +  πk, k  ∈ z 2x = -  π/4  +  πk, k  ∈ z x₁ = -  π/8   +  πk/2, k  ∈ z2) tg2x = - 1/2 2x = arctg(-1/2) +  πn, n  ∈ z x₂ =  - (1/2)*arctg(1/2) +  πn , n  ∈ z 3)   sin(2x + 12π/7) = 2sin(x -  π/7) - sin2x = - 2sinx 2sinxcosx - 2sinx = 0 2sinx(cosx - 1) = 0 1)   sinx = 0 x₁ =  πk, k  ∈ z 2)   cosx - 1 = 0 cosx = 1 x₂ = 2πn, n  ∈ z
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота