1. область определения: от минус бесконечно до плюс бесконеч. 2. ни четная, ни нечетная 3. непериодич. 4.пересечения с осями : ох : точки (9; 0) и (1; 0) с оу: точка ( 0; 9) 5. производная функции будет равна = 2х-10 приравниваем к нулю 2х-10=0 х= 5 находим промежутки монотонности: функция убывает от минус бесконечно до 5, возрастает от 5 до плюс бесконечности), точка минимума (5; -16) по этим данным уже график самостоятельно. сначала отметь точку минимума, потом точки пересечения с осями и все, строй : ) учитывай промежутки монотонности
х²·( х - 3) + 2х·(3 - х)² = 0
Квадраты противоположных выражений равны, поэтому (3 - х)² = (х - 3)², получим
х²·( х - 3) + 2х· (х - 3)² = 0
Вынесем за скобки общий множитель х·( х - 3):
х·( х - 3)·(х + 2·(х - 3) ) = 0
х·( х - 3)·(х + 2·х - 6 ) = 0
х·( х - 3)·(3·х - 6 ) = 0
3·х·( х - 3)·(х - 2 ) = 0
х = 0 или х - 3 = 0, или х - 2 = 0
х = 3 х = 2
ответ: 0; 2; 3.
Проверка:
!) Если х = 0, то 0²·( 0 - 3) + 2·0·(3 - 0)² = 0, 0 = 0 - верно
2) Если х = 2, то 2²·( 2 - 3) + 2·2·(3 - 2)² = 0, 0 = 0 - верно
3) Если х = 3, то 3²·( 3 - 3) + 2·3·(3 - 3)² = 0, 0 = 0 - верно