Понятно, что в больших коробках и в маленьких коробках количество книг одинаковое и равно половине от общего количества книг (примем за Х). Неодинаково количество больших и маленьких коробок. Пусть больших коробок было А штук, а меленьких В штук. Тогда 24*А - количество книг в больших коробках, 15*В - количество книг в маленьких коробках. И там, и там половина от общего количества книг (по условию). То есть, 24*А = 15*В = Х/2. Мы знаем, что больших коробок на 3 меньше, значит А - 3 = В. Подставим это значение В в наше первое уравнение: 24А = 15(А-3) 24А = 15А-45 А = 5 - столько было больших коробок, а книг в них, соответственно, 120 (24 * 5). Маленьких коробок было 8 (5 + 3), и книг в них тоже 120. Следовательно, всего книг 120 * 2 = 240. ответ: 240 книг.
24А = 15(А-3)
24А = 15А-45
А = 5 - столько было больших коробок, а книг в них, соответственно, 120 (24 * 5). Маленьких коробок было 8 (5 + 3), и книг в них тоже 120.
Следовательно, всего книг 120 * 2 = 240.
ответ: 240 книг.
t²-3t-4=0
D=9+16=25 > 0, значит 2 корня
t₁ = (3+5)/2=4
t₂ = (3-5)/2 = -1
сделаем обратную замену
cos x=4 - не подходит, так как E(y)= [-1;1] -область значений функции косинус
cos x=-1, x=π+2πn, n∈Z
2) 2 cos²x - 5sinx+1 =0
2(1-sin²x) -5sinx+1=0
2 - 2sin²x -5sinx+1=0
2sin²x+5sinx-3=0
введем замену sinx =t, тогда получим
2t²+5t-3=0
D=25+24=49 >0 - значит 2 корня
t₁ =(-5-7)/4=-3
t₂ =(-5+7)/4 = 1/2, введем обратную замену
sin x =-3 - не подходит, так как E(y)= [-1;1] -область значений функции синус
sinx = 1/2, х =π/6 + 2πn и x= 5π/6 + 2πn , где n∈Z