Пусть скорость мотоциклиста из пункта А до В равна х км/ч
весь путь вычисляется по формуле
S=vt
Тогда время в часах затраченное мотоциклистом от А до В равно
t = S/x
а время от В до А равно
S/2÷ (x+9)+S/2÷30
так как время обратного пути мотоциклиста равно первоначальному, то получаем следующее уравнение
S/x = S/2÷ (x+9)+S/2÷30
Делим обе части уравнения на S, т.к. знаем, что S, не равно 0
переносим в одну сторону. Получаем следующее уравнение
приведем к общему знаменателю
Дискриминант равен (-21)²-4*1* (-540)= 2601
Д больше 0, значит уравнение имеет 2 корня
Так как скорость не может быть отрицательным числом, значит
ответ 36 км/ч
Объяснение:
2) ( 3x + 3y) - bx - by = 3(x + y) - b(x + y) = (x+y)(3 - b)
3) (4n - 4) + ( c - nc) = 4( n - 1) + c( 1 - n) = (4 - c)(n - 1)
4) ( x⁷ + x³) - 4x⁴ - 4 = x³(x⁴ + 1) - 4( x⁴ + 1) = (x⁴+1)( x³ - 4)
5) (6mn - 3m) + ( 2n - 1) = 3m( 2n - 1) + ( 2n - 1)=(2n - 1)(3m + 1)
6) (4a⁴ - 8a) +(10y - 5ya³) = 4a(a³ - 2) + 5y(2 - a³) = (4a - 5y)(a³ - 2)
7) a²b² - a + ab² - 1 = (a²b² + ab²) - (a + 1) = ab²(a + 1) - (a+1)=(a+1)(ab² - 1)
8) (xa - xb²) + (zb² - za) - ya + yb² = x(a-b²)+z(b² -a) - y(a -b²)=(x - z - y)(a - b²)
Пусть скорость мотоциклиста из пункта А до В равна х км/ч
весь путь вычисляется по формуле
S=vt
Тогда время в часах затраченное мотоциклистом от А до В равно
t = S/x
а время от В до А равно
S/2÷ (x+9)+S/2÷30
так как время обратного пути мотоциклиста равно первоначальному, то получаем следующее уравнение
S/x = S/2÷ (x+9)+S/2÷30
Делим обе части уравнения на S, т.к. знаем, что S, не равно 0
переносим в одну сторону. Получаем следующее уравнение
приведем к общему знаменателю
Дискриминант равен (-21)²-4*1* (-540)= 2601
Д больше 0, значит уравнение имеет 2 корня
Так как скорость не может быть отрицательным числом, значит
ответ 36 км/ч
Объяснение: