Возьмем за S весь объем задания, а за х и у - скорость первого и второго штукатура соответственно тогда первый может выполнить задание за S/x часов, а второй за S/y. S/x +5=S/y S/(x+y)=6 надо найти S/x и S/y
S/y-S/x=5 S=6x+6y S/x =6+6y/x S/y=6+6x/y 6+6y/x-6-6x/y=5 обозначим y/x=z 6z-6/z=5 6z²-6=5z 6z²-5z-6=0 D=5²+4*6*6=169 √D=13 z₁=(5-13)/12=-8/12=-2/3 отбрасываем, так как z не может быть отрицательным z₂=(5+13)/12=-18/12=3/2=1,5 S/x =6+6y/x=6+6z=6+6*1,5=6+9=15 S/y=6+6x/y=6+6/z=6+6/1,5=6+4=10 ответ: 15 и 10 часов
ответ:: S6 = 10,2
Объяснение:
1. Для определения суммы шести членов арифметической прогрессии необходимо узнать значение шестого ее члена и только тогда найти S6 по формуле
Sn = (a1 + an) : 2 * n.
2. Известна формула для энного члена арифметической прогрессии
аn = a1 + d *(n - 1).
3. Пользуясь этой формулой вычислим разность прогрессии d.
a4 = a1 + d * 3;
1,8 = 1,2 + 3 d;
d = (1,8 - 1,2) : 3 = 0,6 : 3 = 0,2.
4. Теперь найдем а6.
а6 = а1 + d * 5 = 1,2 + 0,2 * 5 = 1,2 + 1 = 2,2.
5. Отвечаем на во задачи
S6 = (a1 + a6) : 2 * 6 = (1,2 + 2,2) : 2 * 6 = 10,2.
тогда первый может выполнить задание за S/x часов, а второй за S/y.
S/x +5=S/y
S/(x+y)=6
надо найти S/x и S/y
S/y-S/x=5
S=6x+6y
S/x =6+6y/x S/y=6+6x/y
6+6y/x-6-6x/y=5
обозначим y/x=z
6z-6/z=5
6z²-6=5z
6z²-5z-6=0
D=5²+4*6*6=169
√D=13
z₁=(5-13)/12=-8/12=-2/3 отбрасываем, так как z не может быть отрицательным
z₂=(5+13)/12=-18/12=3/2=1,5
S/x =6+6y/x=6+6z=6+6*1,5=6+9=15
S/y=6+6x/y=6+6/z=6+6/1,5=6+4=10
ответ: 15 и 10 часов