Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять (*), . И правда:
(*) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять (**), . И правда:
(**) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.
Пусть длина участка равна х м., а ширина - у м. Зная, что периметр = 160 м, а формула для нахождения периметра P=2*(a+b) и площадь участка = 1596 м^2 а формула S=a*b, составим систему уравнений:
Выразив одну величину через другую, выполним подстановку и решим уравнение с одним неизвестным, получим :
(80-у)*у=1596
80у-у^2=1596
y^2-80y+1596=0
D=b^2-4ac=80^2-4*1*1596=6400-6384=16 D>0, уравнение имеет 2 корня:
у1,2=(-b±√D)/2a
y1=(80-)/2*1=(80-4)/2=76/2=38
y2=(80+)/2*1=(80+4)/2=84/2=42
Тогда х1+38=80
х1=80-38=42
х2+42=80
х2=80-42=38. Значит размеры садового участка равны 38 м и 42 м, меньший из них равен 38 м
По определению,
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять (*), . И правда:
(*) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять (**), . И правда:
(**) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.
Объяснение:
Пусть длина участка равна х м., а ширина - у м. Зная, что периметр = 160 м, а формула для нахождения периметра P=2*(a+b) и площадь участка = 1596 м^2 а формула S=a*b, составим систему уравнений:
Выразив одну величину через другую, выполним подстановку и решим уравнение с одним неизвестным, получим :
(80-у)*у=1596
80у-у^2=1596
y^2-80y+1596=0
D=b^2-4ac=80^2-4*1*1596=6400-6384=16 D>0, уравнение имеет 2 корня:
у1,2=(-b±√D)/2a
y1=(80-)/2*1=(80-4)/2=76/2=38
y2=(80+)/2*1=(80+4)/2=84/2=42
Тогда х1+38=80
х1=80-38=42
х2+42=80
х2=80-42=38. Значит размеры садового участка равны 38 м и 42 м, меньший из них равен 38 м