В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
rafik91
rafik91
14.01.2023 09:27 •  Алгебра

Сколько корней имеет уравнение: cos x = x² распишите, , решение.

Показать ответ
Ответ:
1945269
1945269
05.10.2020 23:34
2.

Во-первых, x = 0 - не корень уравнения. Во-вторых, если x - решение, то и (-x) - решение. Поэтому будем искать только положительные корни, а потом их количество умножим на 2 и получим общее число корней.

На промежутке (0, π] функция f(x) = cos x монотонно убывает от 1 до -1, а функция g(x) = x^2 монотонно возрастает от 0 до π². Значит, поскольку f(0) > g(0), f(π) < g(π) и функции монотонные, то на промежутке (0, π] у уравнения f(x) = g(x) ровно один корень. При x > π выполнено неравенство g(x) > 2 > f(x), поэтому корней у уравнения нет.

Итак, у уравнения ровно 1 положительный корень, значит, ровно 1 отрицательный, а всего 2 действительных корня.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота