можно предположить, что для любых двух разных точек a и b из s найдется отличная от них точка x из s такая, что либо xa < 0,999ab, либо xb < 0,999ab.
переформулируем утверждение: для любого отрезка i с концами в s и длиной l найдется отрезок i′ с концами в s длины не более 0,999l, один из концов которого совпадает с некоторым концом i.
или, иначе говоря, i′ пересекает i.
возьмем теперь первый отрезок i1 длины l и будем брать отрезки i2, i3, …так, что ik + 1 пересекается с ik и |ik + 1| < 0,999|ik|.
все эти отрезки имеют концы в s. ломаная не короче отрезка, соединяющего ее концы, поэтому расстояние от любого конца ik до любого конца i1 не превосходит
следовательно, в квадрате 2000l × 2000l с центром в любом из концов i1 лежит бесконечное число точек s.
но из условия следует конечность их числа в любом квадрате.
докажем утверждение от противного.
можно предположить, что для любых двух разных точек a и b из s найдется отличная от них точка x из s такая, что либо xa < 0,999ab, либо xb < 0,999ab.
переформулируем утверждение: для любого отрезка i с концами в s и длиной l найдется отрезок i′ с концами в s длины не более 0,999l, один из концов которого совпадает с некоторым концом i.
или, иначе говоря, i′ пересекает i.
возьмем теперь первый отрезок i1 длины l и будем брать отрезки i2, i3, …так, что ik + 1 пересекается с ik и |ik + 1| < 0,999|ik|.
все эти отрезки имеют концы в s. ломаная не короче отрезка, соединяющего ее концы, поэтому расстояние от любого конца ik до любого конца i1 не превосходит
следовательно, в квадрате 2000l × 2000l с центром в любом из концов i1 лежит бесконечное число точек s.
но из условия следует конечность их числа в любом квадрате.
5x(2x +1) = 0 --> x = - 0.5
25 - 100x^2 = 25*(1 - 4x^2) = 25*(1 - 2x)(1+2x) --> x 1 = +0.5 x2 = - 0.5
25x^2 - 14 = 0; 25x^2 = 14 ; x^2 = 0.56 --> x = v 0.56
2x^2 - 8 = 0; 2x^2 = 8; x^2 = 4; x1= 2; x2 = -2
4x^2 - 12=0; 4x^2 = 12; x^2 = 3 ; x = v 3
x^2 - 10x = 0 ; x(x - 10) = 0--> x = 10
4x^2 + 20x = 0; 4x(x + 5)=0--> x = - 5
2x^2 + x = 0; x(x + 1) = 0 --> x = - 1
3x^2 - 27 = 0; 3(x^2 - 9)=0; 3(x-3)(x+3)=0--> x1 = 3; x2 = - 3
4x^2 + 20x = 0; 4x(x + 5) = 0; x = - 5