Разложим числа на простые множители: 639=3*3*71 221=17*13 поэтому НОД(639, 221)=1, НОК(639, 221)=3*3*71*17*13= 141 219 Разложим числа на простые множители: 237=3*79 215=5*43 поэтому НОД(237, 215)=1, НОК(237, 215)=3*79*5*43=50 955 это к двум последним решение . но мог и ошибиться
Не может быть 56. Уравнение данное в ответе неизвестно в вычислении. Рассмотрим на примере правильного 8-угольника: Как видно на рисунке из каждой вершины выходит 5 лучей не совпадающих со сторонами многоугольника. Из этого можно заметить, что из каждой вершины выходит по 4 треугольника, которые не совпадают ни с одним другим треугольников проведённым из других вершин.
Извиняюсь перед автором ниже. Действительно 56, тк не учёл ещё по 3 треугольника из каждой вершины. Из каждой вершины можно построить по 7 разных треугольников. Отсюда верно утверждение: 7*8.
но мог и ошибиться
Рассмотрим на примере правильного 8-угольника:
Как видно на рисунке из каждой вершины выходит 5 лучей не совпадающих со сторонами многоугольника. Из этого можно заметить, что из каждой вершины выходит по 4 треугольника, которые не совпадают ни с одним другим треугольников проведённым из других вершин.
Извиняюсь перед автором ниже. Действительно 56, тк не учёл ещё по 3 треугольника из каждой вершины. Из каждой вершины можно построить по 7 разных треугольников. Отсюда верно утверждение: 7*8.