Коротко: Наша цель найти k и b, чтобы подставить их в уравнение прямой y = kx + b.
Подробное решение:
Рассмотрим 1ую функцию:
Возьмем произвольную точку; пусть это будет точка A(0; 0). Мы видим по графику, что это прямая. Уравнение прямой: y = kx + b (в некоторых учебниках пишут y = kx + m разницы нет вообще (только буква другая) ).
Мы смотрим, какой x у точки A (т.е. на 1ое число после скобки A(x; y) ). Видим, что x = 0. Аналогично и y = 0. Подставим эти значения в формулу. Вместо y (в формуле y = kx + b) идет 0; вместо x тоже 0, но его мы уже подставляем суда: y = kx + b. Получим: 0 = 0 + b. Это простейшее линейное уравнение. Хорошо видно, что b = 0.
Отлично, b нашли. Теперь найдем k. Возьмем любую другую точку, где x не равен 0. Пусть это будет точка B(2; 1). Помнишь как найти x и y этой точки? Правильно: x = 2, y = 1 (т.к. B(x; y) ). Подставим их в уравнение прямой y = kx + b (мы не забываем про b, его мы уже знаем). Получили: 1 = k * 2 + 0. Простое линейное уравнение. Решив его, увидим, что k = 0.5.
Теперь подставим k и b в наше уравнение прямой. Результатом всех наших действий стала формула уравнения прямой 1ой функции. ответ на 1ую задачу: y = 0.5x
Рассмотрим 2ую функцию:
Я бы сказал, она самая простая. Y здесь фиксированный и не меняется при изменении x! Поэтому в таких случаях мы просто пишем y = 2. Эта функция всегда дает нам значение 2. Применять алгоритм из 1ого примера ни в коем случае не нужно.
Рассмотрим 3ью функцию:
Применим алгоритм из 1ого примера. Возьмем точку A(0; 3). 3 = 0 + b => b = 3. Возьмем точку B(2; 0). 0 = 2 * k + 3 => k = -1.5. Все просто! ответ: y = -1.5k + 3
В решении.
Объяснение:
Дана функция у=√х:
а) График которой проходит через точку с координатами А(а; 2√3). Найдите значение а.
Нужно в уравнение подставить известные значения х и у (координаты точки А):
2√3 = √а
(2√3)² = (√а)²
4*3 = а
а=12;
b) Если х∈[0; 3], то какие значения будет принимать данная функция?
у= √х
у=√0=0;
у=√3=√3;
При х∈ [0; 3] у∈ [0; √3].
с) y∈ [2; 9]. Найдите значение аргумента.
2 = √х
(2)² = (√х)²
х=4;
9 = √х
(9)² = (√х)²
х=81;
При х∈ [4; 81] y∈ [2; 9].
d) Найдите при каких х выполняется неравенство у ≤ 3.
√х <= 3
(√х)² <= (3)²
х <= 9;
Неравенство у ≤ 3 выполняется при х <= 9.
Коротко: Наша цель найти k и b, чтобы подставить их в уравнение прямой y = kx + b.
Подробное решение:
Рассмотрим 1ую функцию:Возьмем произвольную точку; пусть это будет точка A(0; 0). Мы видим по графику, что это прямая. Уравнение прямой: y = kx + b (в некоторых учебниках пишут y = kx + m разницы нет вообще (только буква другая) ).
Мы смотрим, какой x у точки A (т.е. на 1ое число после скобки A(x; y) ). Видим, что x = 0. Аналогично и y = 0. Подставим эти значения в формулу. Вместо y (в формуле y = kx + b) идет 0; вместо x тоже 0, но его мы уже подставляем суда: y = kx + b. Получим: 0 = 0 + b. Это простейшее линейное уравнение. Хорошо видно, что b = 0.
Отлично, b нашли. Теперь найдем k. Возьмем любую другую точку, где x не равен 0. Пусть это будет точка B(2; 1). Помнишь как найти x и y этой точки? Правильно: x = 2, y = 1 (т.к. B(x; y) ). Подставим их в уравнение прямой y = kx + b (мы не забываем про b, его мы уже знаем). Получили: 1 = k * 2 + 0. Простое линейное уравнение. Решив его, увидим, что k = 0.5.
Теперь подставим k и b в наше уравнение прямой. Результатом всех наших действий стала формула уравнения прямой 1ой функции. ответ на 1ую задачу: y = 0.5x
Рассмотрим 2ую функцию:Я бы сказал, она самая простая. Y здесь фиксированный и не меняется при изменении x! Поэтому в таких случаях мы просто пишем y = 2. Эта функция всегда дает нам значение 2. Применять алгоритм из 1ого примера ни в коем случае не нужно.
Рассмотрим 3ью функцию:Применим алгоритм из 1ого примера. Возьмем точку A(0; 3). 3 = 0 + b => b = 3. Возьмем точку B(2; 0). 0 = 2 * k + 3 => k = -1.5. Все просто! ответ: y = -1.5k + 3