Пусть меньшая сторона равна x, тогда большая будет x+8. Составим и решим уравнение:
x*(x+8)=65
x^2+8x=65
x^2+8x-65=0
получилось квадратное уравнение
D=64+260=324=18^2
x1=(-8+18)/2=5, x2=(-8-18)/2= -13
Сторона не может быть отрицательной, значит подходит только один корень уравнения, то есть 5 м - это меньшая сторона.
Большая сторона равна 5+8=13 м.
Чтобы найти, сколько материала надо купить, найдём периметр бордюра.
P=2*(13+5)=36 м.
Соответственно, нужно купить 4 упаковки материала по 10 м, чтобы полностью построить бордюр. Останется материала на 4 м.
Имеем 3 точки, принадлежащие графику функции:
А(1; 0), В(8; 0) и С(5; 24).
Составим систему их трёх уравнений, подставив в уравнение квадратного трёхчлена вида y = ax² + bx + c координаты известных точек.
a*1² + b*1 + c = 0 ,
a*8² + b*8 + c = 0,
a*5² + b*5 + c = 24.
Решение можно выполнить методом Крамера.
a b c B
25 5 1 24 Определитель 84
1 1 1 0
64 8 1 0
Заменяем 1-й столбец на вектор результатов B:
24 5 1
0 1 1 Определитель -168
0 8 1
Заменяем 2-й столбец на вектор результатов B:
25 24 1
1 0 1 Определитель 1512
64 0 1
Заменяем 3-й столбец на вектор результатов B:
25 5 24
1 1 0 Определитель -1344
64 8 0
x1= -168 / 84 = -2
x2= 1512 / 84 = 18
x3= -1344 / 84 = -16.
ответ: свободный член этого трёхчлена равен -16.
Уравнение имеет вид у = -2х² + 18х - 16.
Пусть меньшая сторона равна x, тогда большая будет x+8. Составим и решим уравнение:
x*(x+8)=65
x^2+8x=65
x^2+8x-65=0
получилось квадратное уравнение
D=64+260=324=18^2
x1=(-8+18)/2=5, x2=(-8-18)/2= -13
Сторона не может быть отрицательной, значит подходит только один корень уравнения, то есть 5 м - это меньшая сторона.
Большая сторона равна 5+8=13 м.
Чтобы найти, сколько материала надо купить, найдём периметр бордюра.
P=2*(13+5)=36 м.
Соответственно, нужно купить 4 упаковки материала по 10 м, чтобы полностью построить бордюр. Останется материала на 4 м.
Имеем 3 точки, принадлежащие графику функции:
А(1; 0), В(8; 0) и С(5; 24).
Составим систему их трёх уравнений, подставив в уравнение квадратного трёхчлена вида y = ax² + bx + c координаты известных точек.
a*1² + b*1 + c = 0 ,
a*8² + b*8 + c = 0,
a*5² + b*5 + c = 24.
Решение можно выполнить методом Крамера.
a b c B
25 5 1 24 Определитель 84
1 1 1 0
64 8 1 0
Заменяем 1-й столбец на вектор результатов B:
24 5 1
0 1 1 Определитель -168
0 8 1
Заменяем 2-й столбец на вектор результатов B:
25 24 1
1 0 1 Определитель 1512
64 0 1
Заменяем 3-й столбец на вектор результатов B:
25 5 24
1 1 0 Определитель -1344
64 8 0
x1= -168 / 84 = -2
x2= 1512 / 84 = 18
x3= -1344 / 84 = -16.
ответ: свободный член этого трёхчлена равен -16.
Уравнение имеет вид у = -2х² + 18х - 16.