В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
zdavatelzno
zdavatelzno
15.09.2022 06:12 •  Алгебра

Сколько существует расставить в ряд 5 шариков белого, красного, синего, жёлтого и зелёного цветов так, чтобы между зелёным и жёлтым шариками стояло не более одного шарика? Есть всего 5 шариков по одному каждого цвета.

Показать ответ
Ответ:
slava90100
slava90100
23.11.2020 15:38

Определим общее число расстановок на пяти позициях 5 шариков:

5!=5\cdot4\cdot3\cdot2\cdot1=120

Однако, среди этих расстановок есть недопустимые (то есть те, при которых между зеленым и желтым шариком располагаются два или более шарика). Найдем число недопустимых расстановок.

Найдем число недопустимых размещений зеленого и желтого шарика. Их можно просто перечислить:

1) зеленый на 1-ом месте, желтый на 4-ом месте

2) зеленый на 1-ом месте, желтый на 5-ом месте

3) зеленый на 2-ом месте, желтый на 5-ом месте

4) зеленый на 4-ом месте, желтый на 1-ом месте

5) зеленый на 5-ом месте, желтый на 1-ом месте

6) зеленый на 5-ом месте, желтый на 1-ом месте

В каждом из этих случаев оставшиеся три шарика могут размещаться на свободных местах 3!=3\cdot2\cdot1=6

Таким образом, всего имеется 6\cdot6=36 недопустимых расстановок.

Значит, допустимых расстановок имеется:

120-36=84

ответ: 84

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота