Сколько существует различных: a) шестизначных номеров не содержащих рядом расположенных одинаковых цифр и не содержащих цифр 0 и 9 б) шестизначных номеров не содержащих рядом расположенных одинаковых цифр и не содержащих цифр 0, 1, 8, 9
A)y=1,2x-6 если график функции пересекается с осью ох, то координата у=0, вот и подставляем в функцию вместо у=0 и находим х. 0= 1,2x-6 1,2x=6 х=5 получается точка (5,0) если график функции пересекается с осью оу, то координата х=0, вот и подставляем в функцию вместо х=0 и находим у . y=1,2*0-6 у=-6 получается точка (0,-6) b)y=-1/4x+2 делаем аналогично с осью ох: у=0 0=-1/4x+2 1/4x=2 х=8 (8,0) с осью оу: х=0 у=-1/4*0+2 у=2 (0,2) c)y=2,7x+3 с осью ох: у=0 0=2,7x+3 2,7x=-3 х=1 1/9 ( это одна целая одна девятая) ( 1 1/9, 0) с осью оу: х=0 y=2,7*0+3 у=3 (0,3)
график 1 - y= 2/x
y(1) = 2 (1; 2)
y(2) = 1 (2; 1)
y(0.5) = 4 (1/2 ; 4)
y(4) = 0.5 (4 ; 1/2)
y(-1) = -2 (-1; -2)
y(-2) = -1 (-2; -1)
y(-0.5) = -4 (-1/2; -4)
y(-4) = - 0.5 (-4; -1/2)
начерти координатную вот и поставь данные точки. слева и справа у тебя будет плавная дуга.
y = x+1
точки:
(0; 1)
(1; 2)
(-1; 0)
также ставишь точки и соединяешь - получится прямая. она пересечет гиперболу в двух или в одной точке. ищешь координаты и записываешь.
либо:
2/x = x+1
2 = x(x+1)
2 = x^2 + x
x^2 + x - 2 = 0
d = 1 + 8 = 9
x = (-1 + 3) * 0.5 = 1
х = (-1 - 3) * 0.5 = -2