(5х-3)²+(12х+5)²≤(7-13х)²+34х²+17х+410 25х²-30х+9+144х²+120х+25≤49-182х+169х²+34х²+17х+410 169х²+90х+34≤ 203х²-165х+459 169х²-203х²+90х+165х+34-459 ≤ 0 -34х²+255х-425≤0 ( : -17) 2х²-15х+25≥0 D=225-200=25=(5)² x1=(15+5)/4=5 х2=5/2=2,5 2(х-5)(х-2,5)≥0 (:2) (х-5)(х-2,5)≥0 2,55 х + - + нас интересуют только те точки ,где функция принимает положительное значение - это промежутки от -∞ до 2,5 и от 5 до +∞ точки 2,5 и 5 тоже входят , так как неравенство не строгое тогда запишем : х∈(-∞;2,5]U[5;+∞)
Ну во-первых, похоже, что задание записано с ошибкой
Это ряд 2^0+2^1+2^2+...+2^2011+2^2012 или 1+2+2^2+...+2^2011+2^2012
Обычно подобную задачу дают на олимпиаде и связывают с текущим годом, в данном случае 2012.
При перезаписи возникла ошибка, так как степени слились с основанием, поэтиому и получилось что-то вроде 1+2+22+...+22011+22012
Правильный вариант решается через запись 2^2013-1, которая соответствует этому ряду. А для формулы 2^n-1 признак делимости на 3 соблюдяется только для чётных степеней. Поэтому данное число, представленное рядом 2^0+2^1+2^2+...+2^2011+2^2012 не делится на 3.
Но можно решить задачу и с искажённым условием 1+2+22+...+22011+22012
Здесь можно найти зависимость, но она очень сложная и это не школьный уровень. Ряд слагаемых будет следующим:
25х²-30х+9+144х²+120х+25≤49-182х+169х²+34х²+17х+410
169х²+90х+34≤ 203х²-165х+459
169х²-203х²+90х+165х+34-459 ≤ 0
-34х²+255х-425≤0 ( : -17)
2х²-15х+25≥0
D=225-200=25=(5)²
x1=(15+5)/4=5
х2=5/2=2,5
2(х-5)(х-2,5)≥0 (:2)
(х-5)(х-2,5)≥0
2,55 х
+ - +
нас интересуют только те точки ,где функция принимает положительное значение - это промежутки от -∞ до 2,5 и от 5 до +∞
точки 2,5 и 5 тоже входят , так как неравенство не строгое
тогда запишем : х∈(-∞;2,5]U[5;+∞)
Ну во-первых, похоже, что задание записано с ошибкой
Это ряд 2^0+2^1+2^2+...+2^2011+2^2012 или 1+2+2^2+...+2^2011+2^2012
Обычно подобную задачу дают на олимпиаде и связывают с текущим годом, в данном случае 2012.
При перезаписи возникла ошибка, так как степени слились с основанием, поэтиому и получилось что-то вроде 1+2+22+...+22011+22012
Правильный вариант решается через запись 2^2013-1, которая соответствует этому ряду. А для формулы 2^n-1 признак делимости на 3 соблюдяется только для чётных степеней. Поэтому данное число, представленное рядом 2^0+2^1+2^2+...+2^2011+2^2012 не делится на 3.
Но можно решить задачу и с искажённым условием 1+2+22+...+22011+22012
Здесь можно найти зависимость, но она очень сложная и это не школьный уровень. Ряд слагаемых будет следующим:
1+2+22+23+350+351+22011+22012
И число, образованное этой суммой делится на 3!