Объяснение:
-x³+675x-(15+x)(225-15x+x²)>0
-x³+675x-(3375+x³)>0
-2x³+675x-3375>0
-2x³+450x+225x-3375>0
-2x³+30x²-30x²+450x+225(x-15)>0
-2x²(x-15)-30x(x-15)+225(x-15)>0
(x-15)(-2x²-30x+225)>0
Допустим:
x-15=0; x₁=15
Проверка при x₁<15:
-0³+675·0-(15+0)(225-15·0+0²)>0
-15·225>0; -3375<0 - неравенство не соблюдается.
-2x²-30x+225=0
2x²+30x-225=0; D=900+1800=2700
x₂=(-30-√2700)/4=(-30-30√3)/4=(-15√3 -15)/2
x₃=(-30+√2700)/4=(15√3 -15)/2
Проверка при x₂>(-15√3 -15)/2:
-0³+675·0-(15+0)(225-15·0+0²)>0; -3375<0 - неравенство не соблюдается.
Проверка при x₃>(15√3 -15)/2:
-10³+675·10-(15+10)(225-15·10+10²)>0
-1000+6750-25·(225-150+100)>0
5750-25·175>0; 5750-4375>0; 1375>0 - неравенство соблюдается.
Следовательно, (-∞<x<(-15√3 -15)/2)∨((15√3 -15)/2<x<15).
ответ: x∈(-∞; (-15√3 -15)/2)∪((15√3 -15)/2; 15).
Объяснение:
-x³+675x-(15+x)(225-15x+x²)>0
-x³+675x-(3375+x³)>0
-2x³+675x-3375>0
-2x³+450x+225x-3375>0
-2x³+30x²-30x²+450x+225(x-15)>0
-2x²(x-15)-30x(x-15)+225(x-15)>0
(x-15)(-2x²-30x+225)>0
Допустим:
x-15=0; x₁=15
Проверка при x₁<15:
-0³+675·0-(15+0)(225-15·0+0²)>0
-15·225>0; -3375<0 - неравенство не соблюдается.
Допустим:
-2x²-30x+225=0
2x²+30x-225=0; D=900+1800=2700
x₂=(-30-√2700)/4=(-30-30√3)/4=(-15√3 -15)/2
x₃=(-30+√2700)/4=(15√3 -15)/2
Проверка при x₂>(-15√3 -15)/2:
-0³+675·0-(15+0)(225-15·0+0²)>0; -3375<0 - неравенство не соблюдается.
Проверка при x₃>(15√3 -15)/2:
-10³+675·10-(15+10)(225-15·10+10²)>0
-1000+6750-25·(225-150+100)>0
5750-25·175>0; 5750-4375>0; 1375>0 - неравенство соблюдается.
Следовательно, (-∞<x<(-15√3 -15)/2)∨((15√3 -15)/2<x<15).
ответ: x∈(-∞; (-15√3 -15)/2)∪((15√3 -15)/2; 15).
1,2x - 2,5y = 4, 12x-25y=40 36x-75y=120
{ ⇔ ⇔ ⇔ -34x=170
-1,4x+1,5y=1; -14x +15y=10 -70x+75y=50
1-е ур-е множаем сначала на 10, затем на 3;
2-е ур-е множаем сначала на 10, затем на 5; затем складываем ур-я:
-34x=170 ⇔ x= -170/34= - 5 тогда y= [10+14·(-5)]/15= -60/15= -4
Проверка
x= - 5 y= -4 1,2x - 2,5y = 4,
{
-1,4x+1,5y=1;
1,2( - 5 ) - 2,5( - 4 ) = 4, -6+10=4 верно
{
-1,4( - 5 )+1,5( - 4 )=1; 7-6=1 верно
ответ: x= - 5 y= - 4