1) значение функции, если значение аргумента равно: 0; 1; -1.
2) значение аргумента, при котором значение функции равно 0.
3) несколько значений аргумента, при которых функция принимает положительные значения.
4)несколько значений аргумента, при которых функция принимает отрицательные значения.
y=3-2х
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Таблица:
х -1 0 1
у 5 3 1
1)Согласно графика при х=0 у=3
при х= 1 у= 1
при х= -1 у= 5
2)Согласно графика у=0 при х= 1,5
3)Согласно графика у>0 при х∈( -∞; 1,5), положительные значения
у принимает при х от 1,5 до - бесконечности, например, 0, -5, -10.
4)Согласно графика у<0 при х∈(1,5; ∞), отрицательные значения у принимает при х от 1,5 до + бесконечности, например, 2, 7, 25.
1) значение функции, если значение аргумента равно: 1; -2; 0.
2) значение аргумента, при котором значение функции равно: -6; 0; 9.
3) значение аргумента, при которых функция принимает положительные значения.
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Таблица:
х -1 0 1
у 0 3 6
1)Согласно графика при х=1 у=6
при х= -2 у= -3
при х=0 у=3
2)Согласно графика у= -6 при х= -3
у=0 при х= -1
у=9 при х=2
3)Согласно графика у>0 при х∈(-1, ∞) (от -1 до + бесконечности)
Объяснение:
Постройте график функции y=3-2х
Пользуясь графиком, найдите:
1) значение функции, если значение аргумента равно: 0; 1; -1.
2) значение аргумента, при котором значение функции равно 0.
3) несколько значений аргумента, при которых функция принимает положительные значения.
4)несколько значений аргумента, при которых функция принимает отрицательные значения.
y=3-2х
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Таблица:
х -1 0 1
у 5 3 1
1)Согласно графика при х=0 у=3
при х= 1 у= 1
при х= -1 у= 5
2)Согласно графика у=0 при х= 1,5
3)Согласно графика у>0 при х∈( -∞; 1,5), положительные значения
у принимает при х от 1,5 до - бесконечности, например, 0, -5, -10.
4)Согласно графика у<0 при х∈(1,5; ∞), отрицательные значения у принимает при х от 1,5 до + бесконечности, например, 2, 7, 25.
Объяснение:
Постройте график функции y=3x+3.
Пользуясь графиком, найдите:
1) значение функции, если значение аргумента равно: 1; -2; 0.
2) значение аргумента, при котором значение функции равно: -6; 0; 9.
3) значение аргумента, при которых функция принимает положительные значения.
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Таблица:
х -1 0 1
у 0 3 6
1)Согласно графика при х=1 у=6
при х= -2 у= -3
при х=0 у=3
2)Согласно графика у= -6 при х= -3
у=0 при х= -1
у=9 при х=2
3)Согласно графика у>0 при х∈(-1, ∞) (от -1 до + бесконечности)