Нельзя допустить деление на нуль, следовательно x≠0. Отсюда область определения:
График получается с растягивания графика (обратная пропорциональность) вдоль оси у в 6 раз. Это означает, что у данной функции, многие свойства такие же как и у обратной пропорциональности. Мы знаем что график обратной пропорциональности называется гиперболой. Следовательно, график тоже является гиперболой.
Область значений:
Так как функция принимает отрицательные значения на луче то и принимает отрицательные значения на луче
Смогла только первую функцию:)Область определения функций определяется как нахождение всех допустимых значеий х, и имеет некоторые ограничения. а. Если определяемая функция нахолится в знаменателе дроби, но значение функции не должно равняться нулю. б.Если определяемая функция находится под знаком корня, то её значение должно быть больше или равно 0. В данной функции нет знаменателя или корня, поэтому область определения функции имеет бесконечное множетво чисел. 2)Область значений- все значения переменной y 3) эта функция имеет общий вид y=kx+b. График-прямая.
График получается с растягивания графика (обратная пропорциональность) вдоль оси у в 6 раз. Это означает, что у данной функции, многие свойства такие же как и у обратной пропорциональности.
Мы знаем что график обратной пропорциональности называется гиперболой. Следовательно, график тоже является гиперболой.
Область значений:
Так как функция принимает отрицательные значения на луче то и принимает отрицательные значения на луче
Функция нечётна, так как:
Таблица первых значений и сам график во вложении.
а. Если определяемая функция нахолится в знаменателе дроби, но значение функции не должно равняться нулю.
б.Если определяемая функция находится под знаком корня, то её значение должно быть больше или равно 0.
В данной функции нет знаменателя или корня, поэтому область определения функции имеет бесконечное множетво чисел.
2)Область значений- все значения переменной y
3) эта функция имеет общий вид y=kx+b. График-прямая.