В ёмкость А с ёмкости В переливаем 300мл получается в ёмкости А 1 литр а в ёмкости В 500мл и ёмкость С 0 мл
Затем в ёмкость В наливаем из ёмкости А 500мл и получаем в ёмкости В 1 литр перемешанного раствора и остаётся в ёмкости А 500мл и ёмкость С 0мл
Затем в ёмкость С наливаем 250мл из ёмкости А
Остаётся ёмкость В 1 литр перемешанного раствора, ёмкость А 250мл неразведенного равномерно, ёмкость С 250мл неразведенного равномерно.
Теперь из ёмкости В переливаем по 500 мл в ёмкость А и ёмкость С. Получается в ёмкости А 750мл равномерно разведенного раствора в ёмкости С 750мл равномерно разведенного раствора и ёмкость С пустая
Для того чтобы доказать, что множество не замкнуто, нам достаточно найти два иррациональных числа - сложить их и в результате получить рациональное число. То есть сумма двух иррациональных чисел не всегда иррациональна, то есть не замкнуто на иррациональности. Возьмем простейшее иррациональное число √2 и соответсвенно -√2 сложим √2 + (-√2) = √2 - √2 = 0 0 число рациональное . Тем самым мы нашли два иррациональных числа, которые при сложении дают рациональное число Так же доказывается незамкнутость иррациональных чисел при 1. разности 1+√3 и √3 равна 1 2. произведении √2 и 2√2 равно 4 3. делении 2√2 и √2 равно 2
Докажем что √2 иррациональное число Предположим что оно рациональное то есть его можно представить в виде несократимой дроби √2=a/b где a , целые и взаимнопросты (в противном случае они бы сократились) замечаем что a b оба не четные (если бы были оба четными то сократились на 2) Возводим в квадрат 2=a²/b² 2b²=a² замечаем что число 2b² четное, значит и a² тоже четное. заменяем a=2c и подставляем в 2b²=(2c)²=4c² b²=2c² получили что и b четное. То есть a b четные и их можно сократить, но мы предполагали что они взаимнопросты, и тем самым допустили противоречие. Значит √2 нельзя представить в виде дроби и оно иррациональное число
Да можно
Объяснение:
1 ёмкость - А 700мл
2 ёмкость - В 800мл
3 ёмкость - С 0мл
В ёмкость А с ёмкости В переливаем 300мл получается в ёмкости А 1 литр а в ёмкости В 500мл и ёмкость С 0 мл
Затем в ёмкость В наливаем из ёмкости А 500мл и получаем в ёмкости В 1 литр перемешанного раствора и остаётся в ёмкости А 500мл и ёмкость С 0мл
Затем в ёмкость С наливаем 250мл из ёмкости А
Остаётся ёмкость В 1 литр перемешанного раствора, ёмкость А 250мл неразведенного равномерно, ёмкость С 250мл неразведенного равномерно.
Теперь из ёмкости В переливаем по 500 мл в ёмкость А и ёмкость С. Получается в ёмкости А 750мл равномерно разведенного раствора в ёмкости С 750мл равномерно разведенного раствора и ёмкость С пустая
Возьмем простейшее иррациональное число √2 и соответсвенно -√2
сложим √2 + (-√2) = √2 - √2 = 0
0 число рациональное . Тем самым мы нашли два иррациональных числа, которые при сложении дают рациональное число
Так же доказывается незамкнутость иррациональных чисел при
1. разности 1+√3 и √3 равна 1
2. произведении √2 и 2√2 равно 4
3. делении 2√2 и √2 равно 2
Докажем что √2 иррациональное число
Предположим что оно рациональное то есть его можно представить в виде несократимой дроби √2=a/b где a , целые и взаимнопросты (в противном случае они бы сократились) замечаем что a b оба не четные (если бы были оба четными то сократились на 2)
Возводим в квадрат 2=a²/b² 2b²=a² замечаем что число 2b² четное, значит и a² тоже четное. заменяем a=2c и подставляем в 2b²=(2c)²=4c²
b²=2c² получили что и b четное. То есть a b четные и их можно сократить, но мы предполагали что они взаимнопросты, и тем самым допустили противоречие. Значит √2 нельзя представить в виде дроби и оно иррациональное число