случай 1. пусть одна из вершин треугольника лежит на первой прямой, у которой 10 точек, а две другие - на второй прямой, у которой 6 точек.
первую вершину можно выбрать способами, а две другие - способами. по правилу
произведения, всего треугольников
случай 2. пусть одна вершина теперь лежит на второй прямой, а две другие - на первой прямой. тогда первую вершину можно взять способами, а две другие - способами. по правилу произведения, всего таких треугольников -
6*45=270
2х/(4х+3) ≥ 1/22х/(4х+3) - 1/2 ≥ 0 *2 4х/(4х+3) - 1 ≥ 0 (в левой части запишем 1 как дробь (4х+3)/(4х+3) и приведем обе дроби к одному знаменателю)(4х - (4х+3))/(4х+3) ≥ 0 (раскроем скобки в числителе, при этом изменятся знаки у слагаемых 4х и 3, они станут отрицательными)(4х - 4х-3)/(4х+3) ≥ 0-3/(4х+3) ≥ 0 *(-1)3/(4х+3) ≤ 0(т.к. дробь ≤ 0 , числитель 3 > 0, значит знаменатель должен быть строго меньше 0, заметим, что нулю знаменатель не может быть равен, т.к. на ноль делить нельзя)4х+3 < 04х < - 3х < -3/4 ответ: ( - ∞ ; -3/4)
треугольник задается своими тремя вершинами.
случай 1. пусть одна из вершин треугольника лежит на первой прямой, у которой 10 точек, а две другие - на второй прямой, у которой 6 точек.
первую вершину можно выбрать способами, а две другие - способами. по правилу
произведения, всего треугольников
случай 2. пусть одна вершина теперь лежит на второй прямой, а две другие - на первой прямой. тогда первую вершину можно взять способами, а две другие - способами. по правилу произведения, всего таких треугольников -
6*45=270
итак, искомое количество треугольников равно