0.01-4n+400n^2
Объяснение:
1) Возводим в степень скобку: (0.1-20n)^2 = (0.1-20n)(0.1-20n)
Стало: (0.1-20n)(0.1-20n)
2) Раскрываем скобки (0.1-20n)*(0.1-20n)=0.1*(0.1-20n)-20n*(0.1-20n)
Стало: 0.1*(0.1-20n)-20n*(0.1-20n)
3) Раскрываем скобки 0.1*(0.1-20n)=0.1*0.1-0.1*20n
Стало: 0.1*0.1-0.1*20n-20n*(0.1-20n)
4) Выполним умножение: 0.1*0.1 = 0.01
Стало: 0.01-0.1*20n-20n*(0.1-20n)
5) Выполним умножение: -0.1*20n = -2n
Стало: 0.01-2n-20n*(0.1-20n)
6) Раскрываем скобки -20n*(0.1-20n)=-20n*0.1+20n*20n
Стало: 0.01-2n-20n*0.1+20n*20n
7) Выполним умножение: -20n*0.1 = -2n
Стало: 0.01-2n-2n+20n*20n
8) Выполним умножение: 20n*20n = 400n^2
Стало: 0.01-2n-2n+400n^2
9) Выполним вычитание: -2n-2n = -4n
Стало: 0.01-4n+400n^2
При бросании одной игральной кости существует шесть возможных исходов. Посчитаем, сколько существует исходов при бросании двух костей.
6^2 = 36 (исходов).
Посмотрим, в каких случаях произведение выпавших очков будет равно пяти, четырем, десяти или двенадцати.
1) Указанное произведение будет равно пяти в двух случаях:
если на первой кости выпадет 1, а на второй – 5;
если на первой кости выпадет 5, а на второй – 1.
Два из 36 исходов являются благоприятными. Вычислим искомую вероятность.
2 / 36 = 1/18.
2) Указанное произведение будет равно четырем в трех случаях:
если на первой кости выпадет 1, а на второй – 4;
если на каждой из двух костей выпадет 2;
если на первой кости выпадет 4, а на второй – 1.
Три из 36 исходов являются благоприятными. Вычислим искомую вероятность.
3 / 36 = 1/12.
3) Указанное произведение будет равно десяти в двух случаях:
если на первой кости выпадет 2, а на второй – 5;
если на первой кости выпадет 5, а на второй – 2.
4) Указанное произведение будет равно двенадцати в четырех случаях:
если на первой кости выпадет 2, а на второй – 6;
если на первой кости выпадет 3, а на второй – 4;
если на первой кости выпадет 4, а на второй – 3;
если на первой кости выпадет 6, а на второй – 2.
Четыре из 36 исходов являются благоприятными. Вычислим искомую вероятность.
4 / 36 = 1/9.
1) 1/18;
2) 1/12;
3) 1/18;
4) 1/9.
0.01-4n+400n^2
Объяснение:
1) Возводим в степень скобку: (0.1-20n)^2 = (0.1-20n)(0.1-20n)
Стало: (0.1-20n)(0.1-20n)
2) Раскрываем скобки (0.1-20n)*(0.1-20n)=0.1*(0.1-20n)-20n*(0.1-20n)
Стало: 0.1*(0.1-20n)-20n*(0.1-20n)
3) Раскрываем скобки 0.1*(0.1-20n)=0.1*0.1-0.1*20n
Стало: 0.1*0.1-0.1*20n-20n*(0.1-20n)
4) Выполним умножение: 0.1*0.1 = 0.01
Стало: 0.01-0.1*20n-20n*(0.1-20n)
5) Выполним умножение: -0.1*20n = -2n
Стало: 0.01-2n-20n*(0.1-20n)
6) Раскрываем скобки -20n*(0.1-20n)=-20n*0.1+20n*20n
Стало: 0.01-2n-20n*0.1+20n*20n
7) Выполним умножение: -20n*0.1 = -2n
Стало: 0.01-2n-2n+20n*20n
8) Выполним умножение: 20n*20n = 400n^2
Стало: 0.01-2n-2n+400n^2
9) Выполним вычитание: -2n-2n = -4n
Стало: 0.01-4n+400n^2
При бросании одной игральной кости существует шесть возможных исходов. Посчитаем, сколько существует исходов при бросании двух костей.
6^2 = 36 (исходов).
Посмотрим, в каких случаях произведение выпавших очков будет равно пяти, четырем, десяти или двенадцати.
1) Указанное произведение будет равно пяти в двух случаях:
если на первой кости выпадет 1, а на второй – 5;
если на первой кости выпадет 5, а на второй – 1.
Два из 36 исходов являются благоприятными. Вычислим искомую вероятность.
2 / 36 = 1/18.
2) Указанное произведение будет равно четырем в трех случаях:
если на первой кости выпадет 1, а на второй – 4;
если на каждой из двух костей выпадет 2;
если на первой кости выпадет 4, а на второй – 1.
Три из 36 исходов являются благоприятными. Вычислим искомую вероятность.
3 / 36 = 1/12.
3) Указанное произведение будет равно десяти в двух случаях:
если на первой кости выпадет 2, а на второй – 5;
если на первой кости выпадет 5, а на второй – 2.
Два из 36 исходов являются благоприятными. Вычислим искомую вероятность.
2 / 36 = 1/18.
4) Указанное произведение будет равно двенадцати в четырех случаях:
если на первой кости выпадет 2, а на второй – 6;
если на первой кости выпадет 3, а на второй – 4;
если на первой кости выпадет 4, а на второй – 3;
если на первой кости выпадет 6, а на второй – 2.
Четыре из 36 исходов являются благоприятными. Вычислим искомую вероятность.
4 / 36 = 1/9.
1) 1/18;
2) 1/12;
3) 1/18;
4) 1/9.