1)Степень некоторого числа с отрицательным (целым) показателем определяется как единица, делённая на степень того же числа с показателем, равным абсолютной величине отрицательного показателя: а – n = ( 1 / an )
2)Степень любого ненулевого числа с нулевым показателем равна 1:
a^0 = 1
Например: 2^0 = 1, (-5)^0 = 1, (3 / 5)^0 = 1
3)При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.
am · an = am + n ,
где «a» — любое число, а «m», «n» — любые натуральные числа.
1)Степень некоторого числа с отрицательным (целым) показателем определяется как единица, делённая на степень того же числа с показателем, равным абсолютной величине отрицательного показателя: а – n = ( 1 / an )
2)Степень любого ненулевого числа с нулевым показателем равна 1:
a^0 = 1
Например: 2^0 = 1, (-5)^0 = 1, (3 / 5)^0 = 1
3)При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.
am · an = am + n ,
где «a» — любое число, а «m», «n» — любые натуральные числа.
Пример:
b · b2 · b3 · b4 · b5 = b 1 + 2 + 3 + 4 + 5 = b15
a) 10 < a+2b < 17.
б) 7 < 3a - b < 18.
в) 4/5 < а/b < 2 1/3.
Объяснение:
a) a + 2b
1)По условию
3 < b < 5, тогда
2•3 < 2b < 2•5
6 < 2b < 10.
2) Сложим неравенства
4 < a < 7 и
6 < 2b < 10. Получим
4+6 < a+2b < 7+10
10 < a+2b < 17.
б) 3a - b = 3•a + (-1)•b.
1) По условию
4 < a < 7, тогда
3•4 < 3•a < 3•7
12 < 3a < 21.
2) По условию
3 < b < 5, тогда
-1•3 > - b < -1•5
- 3 > - b > - 5
-5 < - b < - 3.
3) Сложим неравенства
12 < 3a < 21 и
-5 < - b < - 3, получим
12-5 < 3а - b < 21 - 3
7 < 3a - b < 18.
в) a\b = а•1/b.
1) По условию
3 < b < 5, тогда
1/3 > 1/b > 1/5
1/5 < 1/b < 1/3.
2) Умножим почленно неравенства
4 < a < 7 и
1/5 < 1/b < 1/3, получим
4•1/5 < а/b < 7•1/3
4/5 < а/b < 2 1/3.