Ф-ция возрастает, когда ее производная в некоторой точке больше нуля, и убывает наоборот, когда ее производная в некоторой точке меньше нуля. Возьмем производную ф-ции 1)f(x)'=10x-3 f(x)'=0 x=0.3 на промежутке (-inf;0.3) производная ф-ции имеет отрицательный знак => на данном промежутке она убывает, а на промежутке (0,3;+inf) имеет положительный знак => возрастает 2)f(x)'=4 производная данной ф-ции всегда положительна => эта ф-ция всегда возрастает на промежутке (-inf;+inf) *inf-бесконечность
Возьмем производную ф-ции
1)f(x)'=10x-3 f(x)'=0
x=0.3
на промежутке (-inf;0.3) производная ф-ции имеет отрицательный знак => на данном промежутке она убывает, а на промежутке (0,3;+inf) имеет положительный знак => возрастает
2)f(x)'=4
производная данной ф-ции всегда положительна => эта ф-ция всегда возрастает на промежутке (-inf;+inf)
*inf-бесконечность
y=x^3+1
для начало приравнем к 0 чтобы узнать точки пересечения с ОСЬЮ ОХ
x^3+1=0
x^3=-1
x=-1
поподает в отрезок от 0 до 2
интегрируем от 0 до 2
Впишем на прямоугольный параллпепиед в координатную систему
пусть ребро
ДД1 = 3
АД=2
АВ=1
теперь координаты каждоый вершины
В1 {2;1;3}
A {2;0;0}
A1 {2;0;3}
C {0;1;0}
AB1 { 0;1;3}
A1C {2;-1;3}
теперь угол по через скалярное произведение
cosa= (-2*0 -1*1+3*3) /√10*√14 = 8/√140 = 8/2√35 4/√35
a=arccos(4/√35)