По условию, выражение -5с-с² принимает отрицательные значения, т.е. значения меньше нуля. Таким образом, задача сводится к решению неравенства -5с-с²<0 Решение: -5c-c²<0 (умножаем обе части неравенства на (-1), при этом знак меняется) c²+5c>0 (разложим на множители левую часть неравенства) c(c+5)>0 (далее решаем методом интервалов) + - + (-5)(0)
Т.к. знак неравенства > (больше нуля), то выбираем области, где стоит знак плюс, получаем ответ: с∈(-∞;-5)U(0;+∞)
Решение:
-5c-c²<0 (умножаем обе части неравенства на (-1),
при этом знак меняется)
c²+5c>0 (разложим на множители левую часть неравенства)
c(c+5)>0 (далее решаем методом интервалов)
+ - +
(-5)(0)
Т.к. знак неравенства > (больше нуля), то выбираем области, где стоит знак плюс, получаем ответ:
с∈(-∞;-5)U(0;+∞)
Рассмотрим два варианта:
1) 0<q<10
+ - +
q10
В этом случае, учитывая, что между числами q и 10 содержится 5 натуральных чисел (5,6,7,8,9), получаем q=4
2) q>10
+ - +
10 q
В этом случае, учитывая, что между числами 10 и q содержится 5 натуральных чисел (11, 12, 13, 14, 15), получаем q=16
ответ: 4 и 16