Верное условие Дима шел три часа при этом скорость его была больше 4км в час, но меньше 6км в час. Сколько км всего мог пройти Дима за это время?
Шёл время t=3ч Скорость V >4 км/ч; V< 6км/ч 4Путь S=? S=V•t Наименьшее S>4•3 Наибольшее S<6•3 Записываем так 12 ответ: Дима мог пройти путь больше 12км и меньше 18км.
Действиями 1)) 3•4=12км путь но его скорость больше 4км/ч, значит 12км<чем 2)) 3•6=18км, путь, но скорость меньше чем 6км/ч, значит 18км> чем от 12<путь<18 ответ: мог пройти больше 12 км и меньше 18 км.
Объяснение:
Периметр прямоугольника есть удвоенная сумма двух его смежных сторон, т.е. P = 2(a+b)
Площадь есть произведение двух его смежных сторон, то есть S = ab
Тогда имеем систему уравнений:
Разделим первое уравнение на 2, и будем иметь то, что Вам и нужно - теорему Виета!
Точнее, такую же систему, какую имеем в теореме Виета для приведенного кв. уравнения, у которого есть два корня.
Здесь решения системы легко подбираются: a = 3, b = 4 (или наоборот, т.к. система относительно переменных симметрична).
Но мы все же решим методом подстановки, ибо не у всех могут учителя принять метод подбора (метод "пристального взгляда", так сказать).
Выразим из первого уравнения a:
a = 7 - b.
Подставим его во второе уравнение:
Назовем b = x, чтобы не путаться, где у нас неизвестное, а где - коэф. кв. трехчлена.
При x1 = b1 = 4 имеем a1 = 7 - b1 = 7 - 4 = 3
При x2 = b2 = 3 имеем a2 = 7 - b2 = 7 - 3 = 4
А значит имеем 2 корня:
a = 3
b = 4
Вернемся к прямоугольнику. a и b - это его стороны, а значит a = 3см и b = 4 см.
ответ: стороны прямоугольника равны 3 см и 4 см.
Дима шел три часа при этом скорость его была больше 4км в час, но меньше 6км в час. Сколько км всего мог пройти Дима за это время?
Шёл время t=3ч
Скорость V >4 км/ч; V< 6км/ч
4Путь S=?
S=V•t
Наименьшее S>4•3
Наибольшее S<6•3
Записываем так
12
ответ: Дима мог пройти путь больше 12км и меньше 18км.
Действиями
1)) 3•4=12км путь но его скорость больше 4км/ч, значит 12км<чем
2)) 3•6=18км, путь, но скорость меньше чем 6км/ч, значит 18км> чем
от 12<путь<18
ответ: мог пройти больше 12 км и меньше 18 км.