Случайные значения размера тела многоножки распределены нормально. Математическое ожидание размера тела равно 0,18 мм, среднее квадратическое отклонение равно 0,05 мм. Потомство дают многоножки, размеры тела которых более 0,15 мм. Определить: 1) процент многоножек, которые дадут потомство; 2) величину, которую не превзойдет размера тела отдельной многоножки с вероятность 0,95.
50 км вел проедет за 50/х ч, а авто за 50/(х + 60) ч. 2 ч 40 мин = 2 + 2/3 = 8/3 ч. Получаем уравнение
50/x - 8/3 = 50/(x + 60)
50/x - 8/3 - 50/(x + 60) = 0
(50*3(x + 60) - 8x(x + 60) - 50*3x) / (3x(x + 60)) = 0
150(x + 60) - 8x^2 - 8*60x - 150x = 0
150x + 9000 - 8x^2 - 480x - 150x = 0
9000 - 8x^2 - 480x = 0
x^2 + 60x - 1125 = 0
D/4 = 30^2 + 1125 = 2025 = 45^2
x1 = -30 - 45 = -75 < 0 - не подходит
x2 = -30 + 45 = 15 - подходит
Скорость велосипедиста 15 км/ч, скорость автомобилиста 75 км/ч.
1) 12⁻³=1/12³=1/1728
2) 3⁻⁴=1/3⁴=1/81
3) (-2)⁻⁶=1/(-2)⁶=1/64
4) (-5)⁻³=-1/5³=-1/125
5) 100⁻¹=1/100=0,01
6) (-1/8)⁻¹=-8
7) (2/3)⁻³=(3/2)³=27/8=3 3/8
8) (-7/9)⁻²=(9/7)²=81/49=1 32/49
9) (1 2/3)⁻¹=(5/3)⁻¹=3/5=0,6
10) (-1 1/4)⁻³=(-5/4)⁻³=(-4/5)³=-64/125
11) (0,01)⁻³=(1/100)⁻³=100³=1 000 000
12) (1,6)⁻²=(1 3/5)⁻²=(8/5)⁻²=(5/8)²=25/64
1) 3⁻³ + 6⁻² = 1/27 + 1/36 = 4/108 + 3/108 = 7/108
2) (2/3)⁻¹ + (-1,7)⁰ - 2⁻³ = 3/2 + 1 - 1/8 = 12/8 + 1 - 1/8 = 11/8 + 8/8 = 19/8 = 2 3/8
3) (3/4)⁻² * 2⁻³ = 16/9 * 1/8 = 16/(9*8) = 2/9
4) 10⁻¹ + 5⁻² - 2⁻³ = 1/10 + 1/25 - 1/8 = 20/200 + 8/200 - 25/200 = 3/200 = 15/1000 = 0,015