В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
linaserdyuk13
linaserdyuk13
06.03.2022 20:39 •  Алгебра

Сметода индукции доказать что 3^{n}\ \textgreater \ n^{3} +5,n\geq 4 n-натуральное число

Показать ответ
Ответ:
arinaari11
arinaari11
09.10.2020 21:27

При  n=4 неравенство верное  

3^4>4^3+5  (верно)

при k=n+1

3^n*3>(n+1)^3+5

3*3^n>n^3+3n^2+3n+6

Из того что 3^n>n^3+5

откуда

2*3^n>3n^2+3n+1

2*3^n>2*(n^3+5)>3n^2+3n+1

Требуется доказать

2(n^3+5)>3n^2+3n+1

(2n+3)(n^2-3n+3)>0

Так как n^2-3n+3>=0

При всех n>=0

То 2n+3>0 при n>=4

Откуда следует верность неравенства

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота