Если А и В лежат по одну сторону от прямой, то расстояние от середины отрезка до прямой равно полусумме расстояний от концов отрезка до этой прямой. Если лежат по разные стороны от прямой, то полуразности этих расстояний. (12-4)/2 = 4 см.
На промежутке [-2π/3;0] функция cosx возрастает, а у=-2xcosx - убывает. Числа 19 -18/π -постоянные, они не влияют на поведение функции. Наибольшее значение при х = -2π/3. Оно равно 19-2*cos(-2π/3)-18/π = 19-2*(-1/2) -18/π = 20-18/π. Это в том случае, если косинус х.( без скобок).
Y = x^2 + 4x = 2 Здесь Все под один знак равно: y = x^2 + 4x - 2 Тогда графиком данной функции будет являться парабола! Приравниваем к 0 правую часть функции: x^2 + 4x - 2 = 0 Находим 2 точки параболы: m и n m = -b дробная черта 2a. ; -4 дроб. черта 2 = -2 n = 4 -8 -2 = -6 Получились 2 точки: A (-2;0) и B (-6;0); Далее находим центральную точку нашей параболы путем нахождения дискриминанта: D = (b/2)^2 - ac. ("/"-дробная черта) D = 4 - 1 (-2) D = 6 Это примернооо 2,4 квадратный корень. x1/2 = -b/2 +- корень из D и все разделить на a. x1/2 = -2 +- 2,4 /// 1 = / x1 = 0,4; x2 = -4.4 Дальше надо начертить систему координат, и расставить эти точки: A (-2;0); B (-6;0); C (-4,4; 0,4);
Если лежат по разные стороны от прямой, то полуразности этих расстояний. (12-4)/2 = 4 см.
На промежутке [-2π/3;0] функция cosx возрастает, а у=-2xcosx - убывает. Числа 19 -18/π -постоянные, они не влияют на поведение функции. Наибольшее значение при х = -2π/3.
Оно равно 19-2*cos(-2π/3)-18/π = 19-2*(-1/2) -18/π = 20-18/π.
Это в том случае, если косинус х.( без скобок).
Здесь Все под один знак равно:
y = x^2 + 4x - 2
Тогда графиком данной функции будет являться парабола!
Приравниваем к 0 правую часть функции:
x^2 + 4x - 2 = 0
Находим 2 точки параболы: m и n
m = -b дробная черта 2a. ; -4 дроб. черта 2 = -2
n = 4 -8 -2 = -6
Получились 2 точки: A (-2;0) и B (-6;0);
Далее находим центральную точку нашей параболы путем нахождения дискриминанта:
D = (b/2)^2 - ac. ("/"-дробная черта)
D = 4 - 1 (-2)
D = 6
Это примернооо 2,4 квадратный корень.
x1/2 = -b/2 +- корень из D и все разделить на a.
x1/2 = -2 +- 2,4 /// 1 = / x1 = 0,4; x2 = -4.4
Дальше надо начертить систему координат, и расставить эти точки:
A (-2;0); B (-6;0); C (-4,4; 0,4);
Получится парабола!