Точки, равноудалённые от данной прямой (по одну её сторону) , образуют прямую, параллельную данной. Это одна из формулировок пятого постулата Евклида: "Если [на плоскости] при пересечении двух прямых третьей сумма внутренних односторонних углов меньше двух прямых, то эти прямые при достаточном продолжении пересекаются, и притом с той стороны, с которой эта сумма меньше двух прямых. " Пятый постулат чрезвычайно сильно отличается от других постулатов Евклида, простых и интуитивно очевидных (см. Начала Евклида) . Поэтому в течение 2 тысячелетий не прекращались попытки исключить его из списка аксиом и вывести как теорему. Все эти попытки окончились неудачей. «Вероятно, невозможно в науке найти более захватывающую и драматичную историю, чем история пятого постулата Евклида» [3]. Несмотря на отрицательный результат, эти поиски не были напрасны, так как в конечном счёте привели к полному пересмотру научных представлений о геометрии Вселенной.
y(y+6)²-(y+1)(y-6)²=y(y²+12y+36)-(y+1)(y²+12y+36)=
=y³+12y²+36y-(y³+12y²+36y+y²+12y+36)=y³+12y²+36y-y³-12y²-36y-y²-12y-36=
=-y²-12y-36=-(y²+12y+36)=-(y+6)²
100-140a+49a²=(10-7a)²
x⁴+18x²y+81y²=(x²+9y)²
(x²-4x)²-16 =(x²-4x)²-4²=((x²-4x)+4)((x²-4x)-4)=(x²-4x+4)(x²-4x-4)
9b²-25c²-3b+5c=(9b²-25c²)+(-3b+5c)=(3b+5c)(3b-5c)-(3b-5c)=
=(3b-5c)(3b+5c-1)
(a-3b)²=a²-9b²
a²-3ab+9b²=a²-9b²
a²-6ab+9b²-a²+9b²=0
-6ab+18b²=0
-6b(a-3b)=0
a-3b=0
a=3b
значит при любых значениях удовлетворяющих а=3b, исходное равенство будет верным
Это одна из формулировок пятого постулата Евклида:
"Если [на плоскости] при пересечении двух прямых третьей сумма внутренних односторонних углов меньше двух прямых, то эти прямые при достаточном продолжении пересекаются, и притом с той стороны, с которой эта сумма меньше двух прямых. "
Пятый постулат чрезвычайно сильно отличается от других постулатов Евклида, простых и интуитивно очевидных (см. Начала Евклида) . Поэтому в течение 2 тысячелетий не прекращались попытки исключить его из списка аксиом и вывести как теорему. Все эти попытки окончились неудачей. «Вероятно, невозможно в науке найти более захватывающую и драматичную историю, чем история пятого постулата Евклида» [3]. Несмотря на отрицательный результат, эти поиски не были напрасны, так как в конечном счёте привели к полному пересмотру научных представлений о геометрии Вселенной.