8)21*(47-13)=21*34=7*3*2*17 делители: 2,3,7,17 34*(13+12) =34*25=2*17*5*5 делители: 2,5,17 9) 8,7*(5,2+7,8) -13*1,7=8,7*13-13*1,7=13*(8,7-1,7)=13*7=91 4)0,25 x 4 x 6-1/3 x 9 x 10=1*6+3*10=6+30=36 1) a)1/6 x 1,79 - 0,35 x 1/6=1/6(1,79-0,35)=1/6*1,44=0,24 б)1,75 x 17 + 1,75 x 3=1,75(17+3)= 1,75*20=35 5) а) да б) да в) нет 6) 24 x (1/3-1/12)-35 x (1/7-1/5)= 24*1/3 -24*1/12 -35*1/7 +35*1/5 =8-2-5+7=8
2) 8,37+5,4+2,63+6,6=(8,37+2,63)+(5,4+6,6)=11+10=21 Переместительное и сочетательное 3) от -210 до 212 Сложим числа -210+210=0, -209+209=0 и т.д. Сумма всех чисел сводится к сумме чисел 211+212=423 Переместительное и сочетательное свойства 7) 0,2 x 5-1/7 x (-10) x 14=1-1/7*14*(-10=)1-2*10=1-20=-19
Область определения функции. ОДЗ:Точки, в которых функция точно неопределена: x=-3 Точка пересечения графика функции с осью координат Y:График пересекает ось Y, когда x равняется 0: подставляем x=0 в x^2/(6*x+18). Результат: y=0. Точка: (0, 0)Точки пересечения графика функции с осью координат X:График функции пересекает ось X при y=0, значит нам надо решить уравнение:x^2/(6*x+18) = 0. Решаем это уравнение и его корни будут точками пересечения с X: x=0. Точка: (0, 0)Экстремумы функции:Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:y'=-6*x^2/(6*x + 18)^2 + 2*x/(6*x + 8)=0 Решаем это уравнение и его корни будут экстремумами:x=-6. Точка: (-6, -2)x=0. Точка: (0, 0)Интервалы возрастания и убывания функции:Найдем интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим на ведет себя функция в экстремумах при малейшем отклонении от экстремума:Минимумы функции в точках:0Максимумы функции в точках:-6Возрастает на промежутках: (-oo, -6] U [0, oo)Убывает на промежутках: [-6, 0]Точки перегибов графика функции:Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции, + нужно подсчитать пределы y'' при аргументе, стремящемся к точкам неопределенности функции:y''=72*x^2/(6*x + 18)^3 - 24*x/(6*x + 18)^2 + 2/(6*x + 18)=0lim y'' при x->+-3 lim y'' при x->--3 (если эти пределы не равны, то точка x=-3 - точка перегиба) Решаем это уравнение и его корни будут точками, где у графика перегибы:x=-3. Точка: (-3, oo)Интервалы выпуклости, вогнутости:Найдем интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках изгибов:Вогнутая на промежутках: [-3, oo)Выпуклая на промежутках: (-oo, -3]Вертикальные асимптотыЕсть: x=-3Горизонтальные асимптоты графика функции:Горизонтальную асимптоту найдем с предела данной функции при x->+oo и x->-oo. Соотвествующие пределы находим :lim x^2/(6*x+18), x->+oo = oo, значит горизонтальной асимптоты справа не существуетlim x^2/(6*x+18), x->-oo = -oo, значит горизонтальной асимптоты слева не существуетНаклонные асимптоты графика функции:Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при x->+oo и x->-oo. Находим пределы :lim x^2/(6*x+18)/x, x->+oo = 1/6, значит уравнение наклонной асимптоты справа: y=1/6*xlim x^2/(6*x+18)/x, x->-oo = 1/6, значит уравнение наклонной асимптоты слева: y=1/6*xЧетность и нечетность функции:Проверим функци четна или нечетна с соотношений f(x)=f(-x) и f(x)=-f(x). Итак, проверяем:x^2/(6*x+18) = x^2/(-6*x + 18) - Нетx^2/(6*x+18) = -(x^2/(-6*x + 18)) - Нетзначит, функция не является ни четной ни нечетной
делители: 2,3,7,17
34*(13+12) =34*25=2*17*5*5
делители: 2,5,17
9) 8,7*(5,2+7,8) -13*1,7=8,7*13-13*1,7=13*(8,7-1,7)=13*7=91
4)0,25 x 4 x 6-1/3 x 9 x 10=1*6+3*10=6+30=36
1)
a)1/6 x 1,79 - 0,35 x 1/6=1/6(1,79-0,35)=1/6*1,44=0,24
б)1,75 x 17 + 1,75 x 3=1,75(17+3)= 1,75*20=35
5) а) да б) да в) нет
6) 24 x (1/3-1/12)-35 x (1/7-1/5)= 24*1/3 -24*1/12 -35*1/7 +35*1/5 =8-2-5+7=8
2) 8,37+5,4+2,63+6,6=(8,37+2,63)+(5,4+6,6)=11+10=21
Переместительное и сочетательное
3)
от -210 до 212
Сложим числа -210+210=0, -209+209=0 и т.д.
Сумма всех чисел сводится к сумме чисел 211+212=423
Переместительное и сочетательное свойства
7)
0,2 x 5-1/7 x (-10) x 14=1-1/7*14*(-10=)1-2*10=1-20=-19
Точка пересечения графика функции с осью координат Y:График пересекает ось Y, когда x равняется 0: подставляем x=0 в x^2/(6*x+18).
Результат: y=0. Точка: (0, 0)Точки пересечения графика функции с осью координат X:График функции пересекает ось X при y=0, значит нам надо решить уравнение:x^2/(6*x+18) = 0. Решаем это уравнение и его корни будут точками пересечения с X:
x=0. Точка: (0, 0)Экстремумы функции:Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:y'=-6*x^2/(6*x + 18)^2 + 2*x/(6*x + 8)=0
Решаем это уравнение и его корни будут экстремумами:x=-6. Точка: (-6, -2)x=0. Точка: (0, 0)Интервалы возрастания и убывания функции:Найдем интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим на ведет себя функция в экстремумах при малейшем отклонении от экстремума:Минимумы функции в точках:0Максимумы функции в точках:-6Возрастает на промежутках: (-oo, -6] U [0, oo)Убывает на промежутках: [-6, 0]Точки перегибов графика функции:Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции,
+ нужно подсчитать пределы y'' при аргументе, стремящемся к точкам неопределенности функции:y''=72*x^2/(6*x + 18)^3 - 24*x/(6*x + 18)^2 + 2/(6*x + 18)=0lim y'' при x->+-3
lim y'' при x->--3
(если эти пределы не равны, то точка x=-3 - точка перегиба)
Решаем это уравнение и его корни будут точками, где у графика перегибы:x=-3. Точка: (-3, oo)Интервалы выпуклости, вогнутости:Найдем интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках изгибов:Вогнутая на промежутках: [-3, oo)Выпуклая на промежутках: (-oo, -3]Вертикальные асимптотыЕсть: x=-3Горизонтальные асимптоты графика функции:Горизонтальную асимптоту найдем с предела данной функции при x->+oo и x->-oo. Соотвествующие пределы находим :lim x^2/(6*x+18), x->+oo = oo, значит горизонтальной асимптоты справа не существуетlim x^2/(6*x+18), x->-oo = -oo, значит горизонтальной асимптоты слева не существуетНаклонные асимптоты графика функции:Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при x->+oo и x->-oo. Находим пределы :lim x^2/(6*x+18)/x, x->+oo = 1/6, значит уравнение наклонной асимптоты справа: y=1/6*xlim x^2/(6*x+18)/x, x->-oo = 1/6, значит уравнение наклонной асимптоты слева: y=1/6*xЧетность и нечетность функции:Проверим функци четна или нечетна с соотношений f(x)=f(-x) и f(x)=-f(x). Итак, проверяем:x^2/(6*x+18) = x^2/(-6*x + 18) - Нетx^2/(6*x+18) = -(x^2/(-6*x + 18)) - Нетзначит, функция не является ни четной ни нечетной