Степень показывает, какое кол-во раз необходимо умножить данное число (основание) на само себя, точнее сколько цифр нужно перемножить, Например: 5 в степени 4 - 5*5*5*5 = 625 (-3) в степени 4 = (-3)*(-3)*(-3)*(-3)=81 (-1) в степени 1 = (-1) Важно: если отрицательное число стоит без скобок, то это значит что знак минус не участвует в перемножении и выносится за скобки, например: -3 в степени 4 = -( 3*3*3*3) = - 81 Это же касается дробных чисел, пример: (2/3) в степени 2 = (2 в степени 2) /(3 в степени 2) 2/3 в степени 2 = (2 в степени 2) / 3 6 в степени 3 - 6*6*6=216, Существуют такие понятие как "квадрат числа" - это вторая степень, например: 4 в квадрате = 4*4=16 и "куб числа" или "число в кубе" - третья степень - 1в кубе = 1*1*1=1 Правило: Любое число в нулевой степени равняется 1, будь то отрицательное число или дробное, даже ноль в степени ноль равен 1 Отрицательная степень переворачивает число, пример: 3 в степени (-1) = 1/3, 2 в степени (-2)= 1/4, (2/3) в степени (-1 )= 3/2
тогда сторона 1-го квадрата = х+3.
S 2 (площадь 2-го квадрата) = х3
S 1 (площадь 1-го квадрата) = (х+3) в кв.
S1=(х+3)^2.
х^2 +6х + 9
Данное значение приривниваем к 0 и ищем по дискриминанту
х^2 + 6х + 9 = 0
а=1 в=6 с=6
Д=6^2 - 4×1×9 = 36 - 36 = 0
х=-3 но так как сторона квадрата не может быть равна -3, то минус просто отбпасываем.
Выходит, что сторона 2-го квадрата = 3, ТОГДА СТОРОНА 1-ГО КВАДРАТА = 3+3=6
Периметр (далее - Р) - это сумма всех сторон квадрата.
Значит Р 1-го квадрата = 6+6+6+6=24
Р 2-го квадрата= 3+3+3+3=12
Можно выполнить проверку при желании. S2= х^2 = 3^2 = 6
24-12=12 S1 больше S2