В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
paraxatdin
paraxatdin
16.08.2020 23:54 •  Алгебра

СОЧ алгебра за 2 задания​

Показать ответ
Ответ:
zheniskanovaa
zheniskanovaa
23.02.2021 20:44

1)  \frac{4x-8}{3} + \frac{3x+1}{8} = \frac{18x-15}{5} -9\\205x-432x=-1440+305\\-227x=-1135\\x=5

ответ: 5

(x-5) * 0 =0\\0=0\\

ответ : x принадлежит R

2) ответ: нет решений, т.к. графики не пересекаются

3) Составим таблицу:

                            1 раствор     2 раствор    смесь

 концентрация       8 %             16%              11%

   масса                    х мл             у мл          400 мл

масса соли           х*8/100           у*16/100      400*11/100

Тогда получим два уравнения

х+у=400

0,08х+0,16у=44

Решим полученную систему:

\left \{ {{x+y=400} \atop {0,08x+0,16y=44}} \right\\\left \{ {{8x+8y=3200} \atop {8x+16y=4400}} \right. \\

Вычтем из второго уравнения первое:

8x+16y-8x-8y=4400-3200

8y=1200

y=150 мл

Тогда х= 400-150=250 мл

ответ: Первого раствора 250 мл, второго 150 мл

0,0(0 оценок)
Ответ:
Marinochka012
Marinochka012
15.02.2023 13:09

1) \ f(x) = 2x^{2} - (a + 2)x + a — квадратичная функция, график которой — парабола с ветвями, направленными вверх.

Нули функции:

2x^{2} - (a + 2)x + a = 0 \ \ \ | : 2

x^{2} - \dfrac{(a + 2)x}{2} + \dfrac{a}{2} = 0

Согласно теореме Виета, имеем:

x_{1} + x_{2} = \dfrac{a + 2}{2} \\x_{1} \cdot x_{2} = \dfrac{a}{2}

По условию \dfrac{1}{x_{1}} + \dfrac{1}{x_{2}} = 3 или \dfrac{x_{1} + x_{2}}{x_{1} \cdot x_{2}} = 3.

Следовательно, подставляя значения x_{1} + x_{2} = \dfrac{a + 2}{2} и x_{1} \cdot x_{2} = \dfrac{a}{2}, найдем параметр a:

\dfrac{\dfrac{a + 2}{2} }{\dfrac{a}{2} } = 3

\dfrac{a + 2}{a} = 3

a + 2 = 3a\\2a = 2\\a = 1

Таким образом, f(x) = 2x^{2} - (1 + 2)x + 1, то есть f(x) = 2x^{2} - 3x + 1

Найдем координаты точки вершины параболы:

x_{0} = \dfrac{3}{4}

f\left(\dfrac{3}{4} \right) = 2 \cdot \left(\dfrac{3}{4} \right)^{2} - 3 \cdot \dfrac{3}{4} + 1 = \dfrac{9}{8} - \dfrac{9}{4} + 1 = -\dfrac{1}{8}

Значит, \left(\dfrac{3}{4} ; \ -\dfrac{1}{8} \right) — точка вершины параболы.

Найдем точки пересечения с осями координат:

а) С осью абсцисс:

2x^{2} - 3x + 1 = 0

D = (-3)^{2} - 4 \cdot 2 \cdot 1 = 9 - 8 = 1

x_{1,2} = \dfrac{3 \pm 1}{4} = \left[\begin{array}{ccc}x_{1} = \dfrac{1}{2} \\ \\x_{2} = 1\\\end{array}\right

Следовательно, \left(\dfrac{1}{2}; \ 0 \right) и (1; \ 0) — точки пересечения функции с осью абсцисс.

б) С осью ординат:

y_{1} = 2 \cdot 0^{2} - 3 \cdot 0 + 1 = 1

Следовательно, (0; \ 1) — точка пересечения с осью ординат.

Согласно свойству симметрии параболы, \left(1; \ \dfrac{3}{2} \right) — точка графика.

Изобразим график данной функции (см. вложение).

2) \ f(x) = x^{2} + 3x + a — квадратичная функция, график которой — парабола с ветвями, направленными вверх.

Нули функции:

x^{2} + 3x + a = 0

Согласно теореме Виета, имеем:

x_{1} + x_{2} = -3\\x_{1} \cdot x_{2} = a

По условию x_{1}^{2} \cdot x_{2} + x_{1} \cdot x_{2}^{2} = 12

Следовательно, подставляя значения x_{1} + x_{2} = -3 и x_{1} \cdot x_{2} = a, найдем параметр a:

x_{1} \cdot \underset{a}{\underbrace{x_{1} \cdot x_{2}}} + \underset{a}{\underbrace{x_{1} \cdot x_{2}}} \cdot x_{2} = 12

x_{1}a + x_{2}a = 12

a(x_{1} + x_{2}) = 12

-3a= 12

a = -4

Таким образом, f(x) = x^{2} + 3x - 4

Найдем координаты точки вершины параболы:

x_{0} = -\dfrac{3}{2}

f\left(-\dfrac{3}{2} \right) = \left(-\dfrac{3}{2} \right)^{2} + 3 \cdot \left(-\dfrac{3}{2}\right) - 4 = \dfrac{9}{4} - \dfrac{9}{2} - 4 = -6\dfrac{1}{4}

Найдем точки пересечения с осями координат:

а) С осью абсцисс:

x^{2} + 3x -4 = 0

x_{1} + x_{2} = -3\\x_{1} \cdot x_{2} = -4

\left[\begin{array}{ccc}x_{1} = -4\\x_{2} = 1 \ \ \\\end{array}\right

Следовательно, \left(-4; \ 0 \right) и (1; \ 0) — точки пересечения функции с осью абсцисс.

б) С осью ординат:

y_{1} = 0^{2} + 3 \cdot 0 -4 = -4

Следовательно, (0; \ -4) — точка пересечения с осью ординат.

Согласно свойству симметрии параболы, \left(-3; \ -4 \right) — точка графика.

Изобразим график данной функции (см. вложение).


1) Постройте график функции f(x)=2x^2-(a+2)x+a, если известно, что её нули x1 и x2 связаны соотношен
1) Постройте график функции f(x)=2x^2-(a+2)x+a, если известно, что её нули x1 и x2 связаны соотношен
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота