54мин=54/60ч=9/10ч=0,9ч х-время быстрой группы на весь путь х+0,9-время медленной группы на весь путь 18/2=9км/ч- совместная скорость 18/х+18/(х+0,9)=9 18(х+0,9)+18х=9х(х+0,9) 18х+16,2+18х=9х²+8,1х 36х+16,2=9х²+8,1х 9х²+8,1х-36х-16,2=0 9х²-27,9х-16,2=0 разделим на 9 х²-3,1х-1,8=0 d = (-3.1)2 - 4·1·(-1.8) = 9.61 + 7.2 = 16.81х₁=( 3.1 - √16.81)/(2*1) = (3.1 - 4.1)/2 = -1/2 = -0.5- не подходитх₂=(3.1 +√16.81)/(2*1) = (3.1 + 4.1)/2 =7,2/2 = 3,6 18/3,6=180/36=20/4=5км/ч-скорость быстрой группы 9-5=4км/ч- скорость медленной группы
Дан промежуток [-pi/2; 0], необходимо определить, какие именно точки из множества решений попадают в него:
k=-1, x=pi/2-pi=-pi/2 - принадлежит промежутку
Является ли х=-pi/2 - экстремумом? - посчитать знак производной ДО и ПОСЛЕ этой точки: производная меняет свой знак с плюса на минус: х=-pi/2 - максимум функции.
На [-pi/2; 0] функция убывает, значит наибольшее значение y(-pi/2)=0, наименьшее значение y(0)=6
Вначале необходимо найти производную и приравнять ее к 0 для нахождения экстремумов:
y' = (6cosx)' = -6*sinx = 0, sinx=0, x=pi/2 + pi*k
Дан промежуток [-pi/2; 0], необходимо определить, какие именно точки из множества решений попадают в него:
k=-1, x=pi/2-pi=-pi/2 - принадлежит промежутку
Является ли х=-pi/2 - экстремумом? - посчитать знак производной ДО и ПОСЛЕ этой точки: производная меняет свой знак с плюса на минус: х=-pi/2 - максимум функции.
На [-pi/2; 0] функция убывает, значит наибольшее значение y(-pi/2)=0, наименьшее значение y(0)=6