И логарифмическая, и показательная функция могут быть либо монотонно убывающей (при основании < 1 ), либо монотонно возрастающей ( при основании больше 1 ). Если функция является монотонно возрастающей, тогда ее значение будет тем больше, чем больше аргумент. Поэтому, если основание логарифма или основание показательной функции больше 1, то при снятии логарифма или экспоненты знак неравенства сохраняется. Если функция монотонно убывает, то ее значение тем меньше, чем больше аргумент. Поэтому, при основании меньше 1 знак неравенства изменяется на противоположный.
Это очень важное свойство, о котором, тем не менее, очень часто забывают.
Предположим, что на карточках есть хотя бы 4 различных числа a<b<c<d. Тогда суммы a+b+c, a+b+d, a+c+d попарно различны, что невозможно. Рассмотрим случай, когда на карточках есть ровно 3 различных числа a<b<c. При этом хотя бы одно число (например, a) встречается не менее 2 раз. Тогда суммы 2a+b<2a+c<a+b+c, что невозможно. Все 6 чисел между собой равны быть не могут, поэтому остается случай, когда есть только 2 различных числа a<b.
Если есть хотя бы две карточки с числом a и 2 карточки с числом b, то суммы 2a+b, a+2b попарно различны и 2a+b<a+2b. Тогда 2a+b=16, a+2b=18, сложив эти равенства, имеем 3a+3b=34, что невозможно, поскольку 34 не делится на 3. Остаются случаи, когда либо есть число a и 5 чисел b, либо число b и 5 чисел a. В первом случае 10 сумм равны a+2b=16 и 10 сумм равны 3b=18, откуда b=6, a=4. Во втором случае 2a+b=16, 3a=18, откуда a=6, b=4, что противоречит условию a<b. Таким образом, наименьшее из чисел равно 4.
Объяснение:
СМЕНА ЗНАКА В НЕРАВЕНСТВАХ
И логарифмическая, и показательная функция могут быть либо монотонно убывающей (при основании < 1 ), либо монотонно возрастающей ( при основании больше 1 ). Если функция является монотонно возрастающей, тогда ее значение будет тем больше, чем больше аргумент. Поэтому, если основание логарифма или основание показательной функции больше 1, то при снятии логарифма или экспоненты знак неравенства сохраняется. Если функция монотонно убывает, то ее значение тем меньше, чем больше аргумент. Поэтому, при основании меньше 1 знак неравенства изменяется на противоположный.
Это очень важное свойство, о котором, тем не менее, очень часто забывают.
Предположим, что на карточках есть хотя бы 4 различных числа a<b<c<d. Тогда суммы a+b+c, a+b+d, a+c+d попарно различны, что невозможно. Рассмотрим случай, когда на карточках есть ровно 3 различных числа a<b<c. При этом хотя бы одно число (например, a) встречается не менее 2 раз. Тогда суммы 2a+b<2a+c<a+b+c, что невозможно. Все 6 чисел между собой равны быть не могут, поэтому остается случай, когда есть только 2 различных числа a<b.
Если есть хотя бы две карточки с числом a и 2 карточки с числом b, то суммы 2a+b, a+2b попарно различны и 2a+b<a+2b. Тогда 2a+b=16, a+2b=18, сложив эти равенства, имеем 3a+3b=34, что невозможно, поскольку 34 не делится на 3. Остаются случаи, когда либо есть число a и 5 чисел b, либо число b и 5 чисел a. В первом случае 10 сумм равны a+2b=16 и 10 сумм равны 3b=18, откуда b=6, a=4. Во втором случае 2a+b=16, 3a=18, откуда a=6, b=4, что противоречит условию a<b. Таким образом, наименьшее из чисел равно 4.