Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.
ответ:изи
Объяснение:
1. Длина окружности равна: L = 100 м;
2. Скорость первого тела: X м/сек;
3. Скорость второго тела: Y м/сек;
4. Встреча тел при движении в одну сторону происходит каждые: Td = 20 сек;
5. Разностная скорость тел: Vp = (X - Y) м/сек;
6. При движении в противоположные стороны время встречи: Tb = 4 сек;
7. Суммарная скорость тел: Vc = (X + Y) м/сек;
8. Составляем два уравнения:
Vp = X - Y = L / Td = 100 / 20 = 5 м/сек;
Vc = X + Y = L / Tb = 100 / 4 = 25 м/сек;
9. Складываем и вычитаем уравнения:
2 * X = 5 + 25 = 30;
X = 30 / 2 = 15 м/сек;
2 * Y = 25 - 5 = 20;
Y = 20 / 2 = 10 м/сек.
ответ: скорость первого тела 15 м/сек, второго 10 м/сек.