27. Известно, что при некоторых значениях a и b значение выражения a-b равно 4. Чему равно при тех же a и b выражение 12/b-a + 16/(b-a)²? Если а-б = 4, тогда б-а = - 4 12/b-a + 16/(b-a)² = 12/4 + 16/4² = 3/1 + 16/16 = 3 + 1 = 4
Сначала осознаем как должен выглядеть график (рис. 1):
Рисуем прямые x = -5 и x = 6, график не должен выходить за эти прямые (обозначили область определения).Рисуем прямые y = -4 и y = 3, график не должен выходить за эти прямые (обозначили множество значений).На оси Ox отмечаем интервал (1;4), график функции должен проходить через ось Ox в этом интервале (обозначили промежуток нулевого значения).
Теперь построим график функции (рис. 2):
Для простоты построим график ломанной (она непрерывна и просто изображается).
Функция убывает на всей области определения, поэтому для самого меньшего х из области определения , должно быть самое наибольшее y из множества значений (потом это значение уже не реализуется т.к. функция убывает, тогда множество значений будет другим). Итог: вершина ломанной в точке (-5;3).Пусть следующая вершина в точке (0;2).Ноль функции, он же пусть будет и вершиной ломанной, в точке (3;0) т.к. 3 ∈ (1;4).Последняя вершина в точке (6;-4), y= -4 для нужного множества значений.
1/2х-у = 1/2 * 4.8 - (-2.1) = 1/2 * 4 целых 8/10 + 2 целых 1/10 = 1/2 * 48/10 + 21/10 = 24/10 + 21/10 = 45/10 = 9/2 = 4 целых 1/10
г) х= -4,4. у= -3.
1/2х - у = 1/2 * (-4.4) - (-3) = - 1/2 * 4 целых 4/10 + 3 = - 1/2 * 44/10 + 3 = - 22/10 + 3/1 = - 22/10 + 30/10 = 8/10 = 4/5
27. Известно, что при некоторых значениях a и b значение выражения a-b равно 4. Чему равно при тех же a и b выражение 12/b-a + 16/(b-a)²?
Если а-б = 4, тогда б-а = - 4
12/b-a + 16/(b-a)² = 12/4 + 16/4² = 3/1 + 16/16 = 3 + 1 = 4
28. Вычислите значение выражения:
а) ах-3у при а=10, х= -5, у= -1/3
10 * (-5) - 3(-1/3) = -50 + 1 = - 49
б) ах+bх+с при а=1/2, х=2, b=-3, с=5,8.
1/2 * 2 - 3 * 2 + 5.8 = 1 - 6 + 5.8 = 0,8
y = f(x)
Сначала осознаем как должен выглядеть график (рис. 1):
Рисуем прямые x = -5 и x = 6, график не должен выходить за эти прямые (обозначили область определения).Рисуем прямые y = -4 и y = 3, график не должен выходить за эти прямые (обозначили множество значений).На оси Ox отмечаем интервал (1;4), график функции должен проходить через ось Ox в этом интервале (обозначили промежуток нулевого значения).Теперь построим график функции (рис. 2):
Для простоты построим график ломанной (она непрерывна и просто изображается).
Функция убывает на всей области определения, поэтому для самого меньшего х из области определения , должно быть самое наибольшее y из множества значений (потом это значение уже не реализуется т.к. функция убывает, тогда множество значений будет другим). Итог: вершина ломанной в точке (-5;3).Пусть следующая вершина в точке (0;2).Ноль функции, он же пусть будет и вершиной ломанной, в точке (3;0) т.к. 3 ∈ (1;4).Последняя вершина в точке (6;-4), y= -4 для нужного множества значений.