Update Отдельно рассмотрим случае, когда занят 1 вагон, 2 вагона и 3 вагона. 1) Количество при которых все 5 пассажиров в одном вагоне равно . Рассадка внутри вагона - единственная. 2) Количество выбрать 2 вагона для рассадки (обязательно, чтобы оба выбранных вагона были заняты, так как случаи занятия только одного вагона уже рассмотрены) равно
Между выбранными двумя вагонам каждый пассажир может делать выбор независимо, кроме случаев, когда один из вагонов оказывается пустым. Значит, таких рассадки - , всего рассадки, при которых заняты ровно 2 вагона: 28*30=840 3) Количество которыми можно выбрать 3 вагона, в которых будут размещаться пассажиры Далее, для каждого выбранного варианта трех вагонов каждый из 5 пассажиров может выбрать любой вагон, то есть, для каждого пассажира есть выбор из трех вагонов. Всего вариантов разных выборов - Но мы должны вычесть все рассадки, при которых остаются пустыми один или 2 вагона. Количество при котором остаются пустыми 2 вагона равно 3 (ровно один для каждого занятого вагона или ) Количество при котором пустым остается 1 вагон - То есть, количество при которых заняты ровно 3 вагона, равно 56*(243-3-90)=56*150=8400 4) Значит, всего 8+840+8400=9248=2^5*17^2.
1) раскрываешь скобки, потом переносишь все влево, а справа оставляешь ноль. далее получается квадрат числа + положительное число больше нуля- это и есть доказательство 2) раскрываешь скобки, переносишь все в одну сторону х сокращается остается, что положительное число больше нуля, т.к. х сократился, то выражения верны при любом значении переменной х 3) переносим все в одну сторону далее подгоняем это выражение под формулу квадрата разности или суммы, два положительных числа больше нуля⇒доказано
Отдельно рассмотрим случае, когда занят 1 вагон, 2 вагона и 3 вагона.
1) Количество при которых все 5 пассажиров в одном вагоне равно
. Рассадка внутри вагона - единственная.
2) Количество выбрать 2 вагона для рассадки (обязательно, чтобы оба выбранных вагона были заняты, так как случаи занятия только одного вагона уже рассмотрены) равно
Между выбранными двумя вагонам каждый пассажир может делать выбор независимо, кроме случаев, когда один из вагонов оказывается пустым.
Значит, таких рассадки - ,
всего рассадки, при которых заняты ровно 2 вагона: 28*30=840
3) Количество которыми можно выбрать 3 вагона, в которых будут размещаться пассажиры
Далее, для каждого выбранного варианта трех вагонов каждый из 5 пассажиров может выбрать любой вагон, то есть, для каждого пассажира есть выбор из трех вагонов. Всего вариантов разных выборов -
Но мы должны вычесть все рассадки, при которых остаются пустыми один или 2 вагона.
Количество при котором остаются пустыми 2 вагона равно 3 (ровно один для каждого занятого вагона или )
Количество при котором пустым остается 1 вагон -
То есть, количество при которых заняты ровно 3 вагона, равно
56*(243-3-90)=56*150=8400
4) Значит, всего
8+840+8400=9248=2^5*17^2.
далее получается квадрат числа + положительное число больше нуля- это и есть доказательство
2) раскрываешь скобки, переносишь все в одну сторону х сокращается остается, что положительное число больше нуля, т.к. х сократился, то выражения верны при любом значении переменной х
3) переносим все в одну сторону далее подгоняем это выражение под формулу квадрата разности или суммы, два положительных числа больше нуля⇒доказано
а) (2у-1)^2+13≥0
б) (3х-у)^2+6y^2≥0