Наше число после вычитания суммы цифр имеет множитель 9. Таким образом, число до вычеркивания цифры должно делиться на 9.
Учитывая, что число делится на 9, если сумма его цифр делится на 9.
Полученное число 830 на 9 не делится (8+3+0=11). А ближайшее число, кратное 9 - это 18 (следующее будет 27, но это две цифры будет и нам не подходит). Значит зачеркнутая цифра 18-11=7
7
Объяснение:
Обозначим первую цифру четырехзначного числа - а, вторую - b, третью - c, четвертую - d.
Записываем наше число в десятичной системе счисления:
1000a+100b+10c+d.
А теперь отнимем из этого числа сумму его цифр:
1000a+100b+10c+d-a-b-c-d.
Упрощаем выражение и считаем;
1000a+100b+10c+d-a-b-c-d=1000a+100b+10c-a-b-c=999a+99b+9c=9(111a+11b+c)
Наше число после вычитания суммы цифр имеет множитель 9. Таким образом, число до вычеркивания цифры должно делиться на 9.
Учитывая, что число делится на 9, если сумма его цифр делится на 9.
Полученное число 830 на 9 не делится (8+3+0=11). А ближайшее число, кратное 9 - это 18 (следующее будет 27, но это две цифры будет и нам не подходит). Значит зачеркнутая цифра 18-11=7
Зачеркнутая цифра была 7
{x=6
y=2
z=5
Объяснение:
Метод Крамера:
Δ==2*(-3)*(-1)+1*2*3+(-3)*1*(-4)-(-3)*(-3)*3-1*1*(-1)-2*2*(-4)=14
Δx==(-1)*(-3)*(-1)+1*2*5-3*10*(-4)-(-3)*(-3)*5-1*10*(-1)+1*2*(-4)=84
Δy==2*10*(-1)+(-1)*2*3+(-3)*1*5-(-3)*10*3-(-1)*1*(-1)-2*2*5=28
Δz==2*(-3)*5+1*10*3+(-1)*(-4)*1-(-1)*(-3)*3-1*1*5-2*10*(-4)=70
x=Δx/Δ=84/14=6
y=Δy/Δ=28/14=2
z=Δz/Δ=70/14=5
Метод Гаусса
Делим первую строку на 0,5(r1/0.5)
Далее r3-3r1 и r2-r1
Следующая итерация r2/(-3.5)
cледующий шаг r1-0.5r2 И r3+5.5r2
Последний шаг r1+r3 r2+r3
{x=6 y=2 z=5
Матричный метод
A=
Δ==2*(-3)*(-1)+1*2*3+(-3)*1*(-4)-(-3)*(-3)*3-1*1*(-1)-2*2*(-4)=14
Находим миноры:
M11==11
M12==-7
М13==5
M21==-13
M22==7
M23==-11
M31==-7
M32==7
M33==-7
A11=11 A12=7 A13=5
A21=12 A22=7 A23=11
A31=-7 A32=-7 A33=-7
A*=
A*т=
A-1= A*т/Δ=
X=A-1*B
B=
X=*===