N⁴ + 2n³ - n² - 2n = n(n³ + 2n² - n - 2) = n[n²(n + 2) - (n + 2)] = = n(n² - 1)(n + 2) = n(n - 1)(n + 1)(n + 2) = (n - 1)n(n + 1)(n + 2) Т.к. n > 1, то данное произведение будет положительным. Мы видим, что произведение представлено в виде четырёх последовательных натуральных чисел. Среди 4 последовательных натуральных чисел одно обязательно делится на 4, поэтому произведение обязательно делится на 4. Среди 3 последовательных натуральных одно обязательно делится на 3, поэтому произведение делится и на 3. Среди двух последовательных натуральных чисел одно обязательно делится на 2. Значит, среди чисел одно делится обязательно на 4, одно на 3 и какое-то ещё на 2 (это число не будет делиться на 4). Значит, всё произведение делится на 2·3·4 = 24, что и требовалось доказать.
а) y=(x-2) в 4 степени
1)Четная
2)Определена на всей области определения
3)Вершина в точке (2;0)
4)Ветви направлены вверх.
5)До x<2 убывает.
6)При x>4 возрастает.
б)0.5sinx+2
1) Определена на всей области определения
2) Нечетная
3) Периодическая
4) Возрастает и убывает
5) Знакопостоянна на промежутках
6) Непрерывна
7) График называеться синусойдой
в)y=0.5cosx+2
1)Определена на всей области определения
2)Четная
3)Периодическая
4)Область значений отрезок [ 1,5; 2,5];
5)Убывает на промежутках [KeZ; п+2пk] и возрастает на промежутках [п+2пk;KeZ]
Г)y=-(x+2)в 4 степени.
1)Определена на всей области определения
2) Вершина в точке (-2;0)
3)Возростает (-бесконечности;-2);
4)Убывает (-2;+бесконечности);
5)Ветви направлены в низ
6) Область значений (0;-бесконечности)
7) Ость оссимптот: x=-2
8)Наибольшее значение при y=0; x=-2
9) Наименьшего значения не существует
= n(n² - 1)(n + 2) = n(n - 1)(n + 1)(n + 2) = (n - 1)n(n + 1)(n + 2)
Т.к. n > 1, то данное произведение будет положительным.
Мы видим, что произведение представлено в виде четырёх последовательных натуральных чисел.
Среди 4 последовательных натуральных чисел одно обязательно делится на 4, поэтому произведение обязательно делится на 4.
Среди 3 последовательных натуральных одно обязательно делится на 3, поэтому произведение делится и на 3.
Среди двух последовательных натуральных чисел одно обязательно делится на 2.
Значит, среди чисел одно делится обязательно на 4, одно на 3 и какое-то ещё на 2 (это число не будет делиться на 4).
Значит, всё произведение делится на 2·3·4 = 24, что и требовалось доказать.