Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Показать больше
Показать меньше
irichkagolikova
05.01.2023 01:21 •
Алгебра
Сократить выражение (2/x+1 + 10/x2-3x-4 + 3/x-4)/ 3x=2/3
Показать ответ
Ответ:
Oladushek3000
04.04.2023 03:03
Условие существования экстремума: f'(x) = 0.
x² + 2x - 3 = 0
По теореме Виета:
x₁ = -3
x₂ = 1
f'(x) > 0, x ∈ (-∞; -3) и f'(x) < 0, x ∈ (-3; -1) U (-1; 1) ⇒ x₁ = -3 -- точка локального максимума
f'(x) < 0, x ∈ (-3; -1) U (-1; 1) и f'(x) > 0, x ∈ (1; +∞) ⇒ x₂ = 1 -- точка локального минимума
2.
Непрерывная на отрезке функция может достигать своего наибольшего и наименьшего значений лишь на концах отрезка и в точках экстремума.
x = 6 ∉ [0; 3] ⇒ функция достигает своего наибольшего и наименьшего значений на концах отрезка.
x = 0 -- точка максимума
x = 3 -- точка минимума
Подробнее - на -
0,0
(0 оценок)
Ответ:
inglis1982
04.04.2023 03:03
Условие существования экстремума: f'(x) = 0.
x² + 2x - 3 = 0
По теореме Виета:
x₁ = -3
x₂ = 1
f'(x) > 0, x ∈ (-∞; -3) и f'(x) < 0, x ∈ (-3; -1) U (-1; 1) ⇒ x₁ = -3 -- точка локального максимума
f'(x) < 0, x ∈ (-3; -1) U (-1; 1) и f'(x) > 0, x ∈ (1; +∞) ⇒ x₂ = 1 -- точка локального минимума
2.
Непрерывная на отрезке функция может достигать своего наибольшего и наименьшего значений лишь на концах отрезка и в точках экстремума.
x = 6 ∉ [0; 3] ⇒ функция достигает своего наибольшего и наименьшего значений на концах отрезка.
x = 0 -- точка максимума
x = 3 -- точка минимума
Подробнее - на -
0,0
(0 оценок)
Популярные вопросы: Алгебра
nadyarn
27.10.2021 11:57
Найти экстремумы функции ...
Сонька766
05.04.2022 17:42
Задания 2-решите уравнение,задание 9 Найдите значение выражения...
89237карина
28.03.2020 19:55
1.При умножение числа на -1 получаем число данному2.при любых значениях х выражение принимает только значение заполните пропуски 6 класс...
NoProblem75
28.03.2020 19:55
Обдасть визначення функції y=x?...
Sanisle
18.05.2023 10:02
При якому значені b коренями рівняння х^2+bх-23=0 є протилежні числа...
agentponomarev6
10.03.2021 10:41
решить задачу.Лодка за 3 часа движения по течению реки и 4 часа против течения реки проходит 114км.Найдите скорость лодки по течению и против течения,если за 6 часов...
pilipenkorita3
04.02.2023 05:16
Разложите многочлен на множители: а) 9х – 9у ; б) 3a + 9b ; в) 14x - 21y ; г)5b3 – 5b ; д) a6 – a4 ....
123fafafartgd
02.10.2020 16:14
Дослідити функцію f(x)=x^2-3x / x+1 та побудувати її графік...
Vladimirr1905
20.07.2020 16:14
Составьте квадратное уравнение, корни которого больше соответствующих корней уравнения x^2 + 3x- 6=0 на 2....
folaelena1
08.06.2021 03:25
Докажите, что при всех натуральных значениях n 3 * 8^2n+1 + 62 * 21^n кратно 43...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
x² + 2x - 3 = 0
По теореме Виета:
x₁ = -3
x₂ = 1
f'(x) > 0, x ∈ (-∞; -3) и f'(x) < 0, x ∈ (-3; -1) U (-1; 1) ⇒ x₁ = -3 -- точка локального максимума
f'(x) < 0, x ∈ (-3; -1) U (-1; 1) и f'(x) > 0, x ∈ (1; +∞) ⇒ x₂ = 1 -- точка локального минимума
2.
Непрерывная на отрезке функция может достигать своего наибольшего и наименьшего значений лишь на концах отрезка и в точках экстремума.
x = 6 ∉ [0; 3] ⇒ функция достигает своего наибольшего и наименьшего значений на концах отрезка.
x = 0 -- точка максимума
x = 3 -- точка минимума
Подробнее - на -
x² + 2x - 3 = 0
По теореме Виета:
x₁ = -3
x₂ = 1
f'(x) > 0, x ∈ (-∞; -3) и f'(x) < 0, x ∈ (-3; -1) U (-1; 1) ⇒ x₁ = -3 -- точка локального максимума
f'(x) < 0, x ∈ (-3; -1) U (-1; 1) и f'(x) > 0, x ∈ (1; +∞) ⇒ x₂ = 1 -- точка локального минимума
2.
Непрерывная на отрезке функция может достигать своего наибольшего и наименьшего значений лишь на концах отрезка и в точках экстремума.
x = 6 ∉ [0; 3] ⇒ функция достигает своего наибольшего и наименьшего значений на концах отрезка.
x = 0 -- точка максимума
x = 3 -- точка минимума
Подробнее - на -