В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
888Blond
888Blond
04.03.2021 00:36 •  Алгебра

Сократить выражение (x-6) * \frac{x^{2}-12x+6 }{x+6}

Показать ответ
Ответ:
voenngti
voenngti
02.04.2022 08:41
Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К.
На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10!
Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы.
Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами.
Для М и Т это будет 2! и 2!, для А – 3!
С учётом порядка позиции их будет: 1*1*1*2!*2!*3! = 24
Тогда вероятность (согласно классическому определению): \frac{24}{10!} = \frac{1}{151200}

Попробуем другой, более простой
Перестановки с повторением.
Всего у нас \frac{(1 + 1 + 1 + 2 + 2 + 3)!}{3!*2!*2!} = \frac{10!}{3!*2!*2!}
Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
\frac{1}{\frac{10!}{3!*2!*2!}} = \frac{3!*2!*2!}{10!} = \frac{24}{10!} = \frac{1}{151200}
0,0(0 оценок)
Ответ:
danil546
danil546
28.09.2022 17:36

y=\frac{x}{\ln{x}}

1. Область определения: На ноль делить нельзя --> \ln{x\neq }0=x\neq 1 и х не отрицательный т.к. х под натуральным логарифмом. Итоге: x∈[0;1)∪(1;+∞)

2. Функция общего вида т.к. f(-x)≠±f(x)

3. Точки пересечения с осями:

\frac{x}{\ln{x}}=0 \\\left \{ {{x=0} \atop {\ln{x}\neq 0=x\neq }1} \right. \\(0;0)\\\frac{0}{\ln{0}} =0 Только одна точка (0;0)

4. Исследование с 1ой производной:

y'=\frac{1*\ln{x}-x*\frac{1}{x} }{\ln^2{x}} =\frac{\ln{x}-1}{\ln^2{x}}

см. внизу.

y(e)=\frac{e}{\ln{e}} =e

5. Исследование со 2ой производной:

y'=\frac{\ln{x}-1}{\ln^2{x}}\\y''=\frac{\frac{\ln^2{x}}{x} -2\ln{x}*\frac{1}{x}*(\ln{x}-1)}{\ln^4{x}} =\\\frac{\ln{x}-2\ln{x}+2}{x*\ln^3{x}}=\\\frac{-(\ln{x}-2)}{x\ln^3{x}}

см. внизу.

y(e^2)=\frac{e^2}{\ln{e^2}}= \frac{e^2}{2}

6. Асимптоты:

Уравнения наклонных асимптот обычно ищут в виде y = kx + b. По определению асимптоты: \lim_{x\to\infty}{(kx+b-f(x))}

Находим коэффициент k: k=\lim_{x\to\infty}{\frac{f(x)}{x}}\\k=\lim_{x\to\infty}{\frac{\frac{x}{ln(x)}}{x}}=\lim_{x\to\infty}{\frac{1}{ln(x)}}=0

Находим коэффициент b: b=\lim_{x\to\infty}{f(x)-k*x}\\b=\lim_{x\to\infty}{\frac{x}{ln(x)}-0*x}=\lim_{x\to\infty}{\frac{x}{ln(x)}}=\infty

Предел равен ∞, следовательно, наклонные асимптоты функции отсутствуют.

Найдем вертикальные асимптоты. Для этого определим точки разрыва: x=1

Находим переделы в точке 1: \lim_{x\to1-0}{\frac{x}{ln(x)}}=-\infty\\\lim_{x\to1+0}{\frac{x}{ln(x)}}=\infty

Значит точка разрыва II рода и является вертикальной асимптотой.


Решите номер 5 .есть вложение. 25 б . с исследованием .
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота